To make the analogy explicit, in Software 1.0, human-engineered source code (e.g. some .cpp files) is compiled into a binary that does useful work. In Software 2.0 most often the source code comprises 1) the dataset that defines the desirable behavior and 2) the neural net architecture that gives the rough skeleton of the code, but with many details (the weights) to be filled in. The process of training the neural network compiles the dataset into the binary — the final neural network. In most practical applications today, the neural net architectures and the training systems are increasingly standardized into a commodity, so most of the active “software development” takes the form of curating, growing, massaging and cleaning labeled datasets.
Recent articles
- New prompt injection papers: Agents Rule of Two and The Attacker Moves Second - 2nd November 2025
- Hacking the WiFi-enabled color screen GitHub Universe conference badge - 28th October 2025
- Video: Building a tool to copy-paste share terminal sessions using Claude Code for web - 23rd October 2025