Semantic text search using embeddings. Example Python notebook from OpenAI demonstrating how to build a search engine using embeddings rather than straight up token matching. This is a fascinating way of implementing search, providing results that match the intent of the search (“delicious beans” for example) even if none of the keywords are actually present in the text.
Recent articles
- Qwen2.5-Coder-32B is an LLM that can code well that runs on my Mac - 12th November 2024
- Visualizing local election results with Datasette, Observable and MapLibre GL - 9th November 2024
- Project: VERDAD - tracking misinformation in radio broadcasts using Gemini 1.5 - 7th November 2024