One way to avoid unspotted prediction errors is for the technology in its current state to have early and frequent contact with reality as it is iteratively developed, tested, deployed, and all the while improved. And there are creative ideas people don’t often discuss which can improve the safety landscape in surprising ways — for example, it’s easy to create a continuum of incrementally-better AIs (such as by deploying subsequent checkpoints of a given training run), which presents a safety opportunity very unlike our historical approach of infrequent major model upgrades.
Recent articles
- Distributing Go binaries like sqlite-scanner through PyPI using go-to-wheel - 4th February 2026
- Moltbook is the most interesting place on the internet right now - 30th January 2026
- Adding dynamic features to an aggressively cached website - 28th January 2026