More capable models can better recognize the specific circumstances under which they are trained. Because of this, they are more likely to learn to act as expected in precisely those circumstances while behaving competently but unexpectedly in others. This can surface in the form of problems that Perez et al. (2022) call sycophancy, where a model answers subjective questions in a way that flatters their user’s stated beliefs, and sandbagging, where models are more likely to endorse common misconceptions when their user appears to be less educated.
Recent articles
- What happens if AI labs train for pelicans riding bicycles? - 13th November 2025
- Reverse engineering Codex CLI to get GPT-5-Codex-Mini to draw me a pelican - 9th November 2025
- Video + notes on upgrading a Datasette plugin for the latest 1.0 alpha, with help from uv and OpenAI Codex CLI - 6th November 2025