More capable models can better recognize the specific circumstances under which they are trained. Because of this, they are more likely to learn to act as expected in precisely those circumstances while behaving competently but unexpectedly in others. This can surface in the form of problems that Perez et al. (2022) call sycophancy, where a model answers subjective questions in a way that flatters their user’s stated beliefs, and sandbagging, where models are more likely to endorse common misconceptions when their user appears to be less educated.
Recent articles
- How Rob Pike got spammed with an AI slop "act of kindness" - 26th December 2025
- A new way to extract detailed transcripts from Claude Code - 25th December 2025
- Cooking with Claude - 23rd December 2025