Decomposing Language Models Into Understandable Components. Anthropic appear to have made a major breakthrough with respect to the interpretability of Large Language Models:
“[...] we outline evidence that there are better units of analysis than individual neurons, and we have built machinery that lets us find these units in small transformer models. These units, called features, correspond to patterns (linear combinations) of neuron activations. This provides a path to breaking down complex neural networks into parts we can understand”
Recent articles
- What happens if AI labs train for pelicans riding bicycles? - 13th November 2025
- Reverse engineering Codex CLI to get GPT-5-Codex-Mini to draw me a pelican - 9th November 2025
- Video + notes on upgrading a Datasette plugin for the latest 1.0 alpha, with help from uv and OpenAI Codex CLI - 6th November 2025