Wikipedia search-by-vibes through millions of pages offline (via) Really cool demo by Lee Butterman, who built embeddings of 2 million Wikipedia pages and figured out how to serve them directly to the browser, where they are used to implement “vibes based” similarity search returning results in 250ms. Lots of interesting details about how he pulled this off, using Arrow as the file format and ONNX to run the model in the browser.
Recent articles
- My review of Claude's new Code Interpreter, released under a very confusing name - 9th September 2025
- Recreating the Apollo AI adoption rate chart with GPT-5, Python and Pyodide - 9th September 2025
- GPT-5 Thinking in ChatGPT (aka Research Goblin) is shockingly good at search - 6th September 2025