Sunday, 4th August 2024
How I Use “AI” by Nicholas Carlini (via) Nicholas is an author on Universal and Transferable Adversarial Attacks on Aligned Language Models, one of my favorite LLM security papers from last year. He understands the flaws in this class of technology at a deeper level than most people.
Despite that, this article describes several of the many ways he still finds utility in these models in his own work:
But the reason I think that the recent advances we've made aren't just hype is that, over the past year, I have spent at least a few hours every week interacting with various large language models, and have been consistently impressed by their ability to solve increasingly difficult tasks I give them. And as a result of this, I would say I'm at least 50% faster at writing code for both my research projects and my side projects as a result of these models.
The way Nicholas is using these models closely matches my own experience - things like “Automating nearly every monotonous task or one-off script” and “Teaching me how to use various frameworks having never previously used them”.
I feel that this piece inadvertently captures the frustration felt by those of us who get value out of these tools on a daily basis and still constantly encounter people who are adamant that they offer no real value. Saying “this stuff is genuine useful” remains a surprisingly controversial statement, almost two years after the ChatGPT launch opened up LLMs to a giant audience.
I also enjoyed this footnote explaining why he put “AI” in scare quotes in the title:
I hate this word. It's not AI. But I want people who use this word, and also people who hate this word, to find this post. And so I guess I'm stuck with it for marketing, SEO, and clickbait.
What do people really ask chatbots? It’s a lot of sex and homework. Jeremy B. Merrill and Rachel Lerman at the Washington Post analyzed WildChat, a dataset of 1 million ChatGPT-style interactions collected and released by the Allen Institute for AI.
From a random sample of 458 queries they categorized the conversations as 21% creative writing and roleplay, 18% homework help, 17% "search and other inquiries", 15% work/business and 7% coding.
I talked to them a little for this story:
“I don’t think I’ve ever seen a piece of technology that has this many use cases,” said Simon Willison, a programmer and independent researcher.
There’s a Tool to Catch Students Cheating With ChatGPT. OpenAI Hasn’t Released It. (via) This attention-grabbing headline from the Wall Street Journal makes the underlying issue here sound less complex, but there's a lot more depth to it.
The story is actually about watermarking: embedding hidden patterns in generated text that allow that text to be identified as having come out of a specific LLM.
OpenAI evidently have had working prototypes of this for a couple of years now, but they haven't shipped it as a feature. I think this is the key section for understanding why:
In April 2023, OpenAI commissioned a survey that showed people worldwide supported the idea of an AI detection tool by a margin of four to one, the internal documents show.
That same month, OpenAI surveyed ChatGPT users and found 69% believe cheating detection technology would lead to false accusations of using AI. Nearly 30% said they would use ChatGPT less if it deployed watermarks and a rival didn’t.
If ChatGPT was the only LLM tool, watermarking might make sense. The problem today is that there are now multiple vendors offering highly capable LLMs. If someone is determined to cheat they have multiple options for LLMs that don't watermark.
This means adding watermarking is both ineffective and a competitive disadvantage for those vendors!