An LLM knows every work of Shakespeare but can’t say which it read first. In this material sense a model hasn’t read at all.
To read is to think. Only at inference is there space for serendipitous inspiration, which is why LLMs have so little of it to show for all they’ve seen.
Recent articles
- LLM 0.22, the annotated release notes - 17th February 2025
- Run LLMs on macOS using llm-mlx and Apple's MLX framework - 15th February 2025
- URL-addressable Pyodide Python environments - 13th February 2025