You likely have a TinyML system in your pocket right now: every cellphone has a low power DSP chip running a deep learning model for keyword spotting, so you can say "Hey Google" or "Hey Siri" and have it wake up on-demand without draining your battery. It’s an increasingly pervasive technology. [...]
It’s astonishing what is possible today: real time computer vision on microcontrollers, on-device speech transcription, denoising and upscaling of digital signals. Generative AI is happening, too, assuming you can find a way to squeeze your models down to size. We are an unsexy field compared to our hype-fueled neighbors, but the entire world is already filling up with this stuff and it’s only the very beginning. Edge AI is being rapidly deployed in a ton of fields: medical sensing, wearables, manufacturing, supply chain, health and safety, wildlife conservation, sports, energy, built environment—we see new applications every day.
Recent articles
- Trying out llama.cpp's new vision support - 10th May 2025
- Saying "hi" to Microsoft's Phi-4-reasoning - 6th May 2025
- Feed a video to a vision LLM as a sequence of JPEG frames on the CLI (also LLM 0.25) - 5th May 2025