Friday, 29th August 2025
Since I love collecting questionable analogies for LLMs, here's a new one I just came up with: an LLM is a lossy encyclopedia. They have a huge array of facts compressed into them but that compression is lossy (see also Ted Chiang).
The key thing is to develop an intuition for questions it can usefully answer vs questions that are at a level of detail where the lossiness matters.
This thought sparked by a comment on Hacker News asking why an LLM couldn't "Create a boilerplate Zephyr project skeleton, for Pi Pico with st7789 spi display drivers configured". That's more of a lossless encyclopedia question!
My answer:
The way to solve this particular problem is to make a correct example available to it. Don't expect it to just know extremely specific facts like that - instead, treat it as a tool that can act on facts presented to it.
The perils of vibe coding. I was interviewed by Elaine Moore for this opinion piece in the Financial Times, which ended up in the print edition of the paper too! I picked up a copy yesterday:
From the article, with links added by me to relevant projects:
Willison thinks the best way to see what a new model can do is to ask for something unusual. He likes to request an SVG (an image made out of lines described with code) of a pelican on a bike and asks it to remember the chickens in his garden by name. Results can be bizarre. One model ignored his prompts in favour of composing a poem.
Still, his adventures in vibe coding sound like an advert for the sector. He used Anthropic's Claude Code, the favoured model for developers, to make an OCR (optical character recognition - software loves acronyms) tool that will copy and paste text from a screenshot.
He wrote software that summarises blog comments and has plans to build a custom tool that will alert him when a whale is visible from his Pacific coast home. All this by typing prompts in English.
I've been talking about that whale spotting project for far too long. Now that it's been in the FT I really need to build it.
(On the subject of OCR... I tried extracting the text from the above image using GPT-5 and got a surprisingly bad result full of hallucinated details. Claude Opus 4.1 did a lot better but still made some mistakes.)