Simon Willison’s Weblog

Subscribe
Atom feed for transformers-js

8 items tagged “transformers-js”

2024

llama-3.2-webgpu (via) Llama 3.2 1B is a really interesting models, given its 128,000 token input and its tiny size (barely more than a GB).

This page loads a 1.24GB q4f16 ONNX build of the Llama-3.2-1B-Instruct model and runs it with a React-powered chat interface directly in the browser, using Transformers.js and WebGPU. Source code for the demo is here.

It worked for me just now in Chrome; in Firefox and Safari I got a “WebGPU is not supported by this browser” error message.

# 30th September 2024, 4:27 pm / webassembly, webgpu, generative-ai, llama, ai, transformers-js, llms

Experimenting with local alt text generation in Firefox Nightly (via) The PDF editor in Firefox (confession: I did not know Firefox ships with a PDF editor) is getting an experimental feature that can help suggest alt text for images for the human editor to then adapt and improve on.

This is a great application of AI, made all the more interesting here because Firefox will run a local model on-device for this, using a custom trained model they describe as "our 182M parameters model using a Distilled version of GPT-2 alongside a Vision Transformer (ViT) image encoder".

The model uses WebAssembly with ONNX running in Transfomers.js, and will be downloaded the first time the feature is put to use.

# 2nd June 2024, 1:12 pm / ai, firefox, llms, mozilla, webassembly, pdf, javascript, transformers-js

The Tokenizer Playground (via) I built a tool like this a while ago, but this one is much better: it provides an interface for experimenting with tokenizers from a wide range of model architectures, including Llama, Claude, Mistral and Grok-1—all running in the browser using Transformers.js.

# 19th March 2024, 2:18 am / llms, ai, transformers-js, generative-ai

Adaptive Retrieval with Matryoshka Embeddings (via) Nomic Embed v1 only came out two weeks ago, but the same team just released Nomic Embed v1.5 trained using a new technique called Matryoshka Representation.

This means that unlike v1 the v1.5 embeddings are resizable—instead of a fixed 768 dimension embedding vector you can trade size for quality and drop that size all the way down to 64, while still maintaining strong semantically relevant results.

Joshua Lochner build this interactive demo on top of Transformers.js which illustrates quite how well this works: it lets you embed a query, embed a series of potentially matching text sentences and then adjust the number of dimensions and see what impact it has on the results.

# 15th February 2024, 4:19 am / transformers-js, nomic, ai, embeddings, llms

2023

Observable notebook: Detect objects in images (via) I built an Observable notebook that uses Transformers.js and the Xenova/detra-resnet-50 model to detect objects in images, entirely running within your browser. You can select an image using a file picker and it will show you that image with bounding boxes and labels drawn around items within it. I have a demo image showing some pelicans flying ahead, but it works with any image you give it—all without uploading that image to a server.

# 1st October 2023, 3:46 pm / machine-learning, javascript, observable, transformers, ai, transformers-js

Perplexity: interactive LLM visualization (via) I linked to a video of Linus Lee’s GPT visualization tool the other day. Today he’s released a new version of it that people can actually play with: it runs entirely in a browser, powered by a 120MB version of the GPT-2 ONNX model loaded using the brilliant Transformers.js JavaScript library.

# 6th September 2023, 3:33 am / llms, generative-ai, ai, javascript, webassembly, transformers-js

Could you train a ChatGPT-beating model for $85,000 and run it in a browser?

Visit Could you train a ChatGPT-beating model for $85,000 and run it in a browser?

I think it’s now possible to train a large language model with similar functionality to GPT-3 for $85,000. And I think we might soon be able to run the resulting model entirely in the browser, and give it capabilities that leapfrog it ahead of ChatGPT.

[... 1,751 words]

Transformers.js. Hugging Face Transformers is a library of Transformer machine learning models plus a Python package for loading and running them. Transformers.js provides a JavaScript alternative interface which runs in your browser, thanks to a set of precompiled WebAssembly binaries for a selection of models. This interactive demo is incredible: in particular, try running the Image classification with google/vit-base-patch16-224 (91MB) model against any photo to get back labels representing that photo. Dropping one of these models onto a page is as easy as linking to a hosted CDN script and running a few lines of JavaScript.

# 16th March 2023, 11:41 pm / machine-learning, generative-ai, javascript, transformers, ai, llms, hugging-face, transformers-js