How FriendFeed uses MySQL to store schema-less data. The pain of altering/ adding indexes to tables with 250 million rows was killing their ability to try out new features, so they’ve moved to storing pickled Python objects and manually creating the indexes they need as denormalised two column tables. These can be created and dropped much more easily, and are continually populated by an off-line index building process.
Recent articles
- The Summer of Johann: prompt injections as far as the eye can see - 15th August 2025
- Open weight LLMs exhibit inconsistent performance across providers - 15th August 2025
- LLM 0.27, the annotated release notes: GPT-5 and improved tool calling - 11th August 2025