Reinforcement Learning with Prediction-Based Rewards (via) Fascinating result: by teaching a reinforcement learning agent that plays video games to optimize for “unfamiliar states”—states where it cannot predict what will happen next—the agent does a much better job of playing some games. “... for the first time exceeds average human performance on Montezuma’s Revenge. RND achieves state-of-the-art performance, periodically finds all 24 rooms and solves the first level without using demonstrations or having access to the underlying state of the game.”
Recent articles
- Video + notes on upgrading a Datasette plugin for the latest 1.0 alpha, with help from uv and OpenAI Codex CLI - 6th November 2025
- Code research projects with async coding agents like Claude Code and Codex - 6th November 2025
- A new SQL-powered permissions system in Datasette 1.0a20 - 4th November 2025