Simple, Fast, and Scalable Reverse Image Search Using Perceptual Hashes and DynamoDB. Christopher Bong provides a clear explanation of how perceptual hashes can be used to create a string representing the visual content of an image, such that similar images can be identified by calculating a hamming distance between those hashes. He then explains how they built a large-scale system for this at Canva on top of DynamoDB, by splitting those strings into smaller hash windows and using those for efficient bulk lookups of similar candidates.
Recent articles
- AI assisted search-based research actually works now - 21st April 2025
- Maybe Meta's Llama claims to be open source because of the EU AI act - 19th April 2025
- Image segmentation using Gemini 2.5 - 18th April 2025