In a previous iteration of the machine learning paradigm, researchers were obsessed with cleaning their datasets and ensuring that every data point seen by their models is pristine, gold-standard, and does not disturb the fragile learning process of billions of parameters finding their home in model space. Many began to realize that data scale trumps most other priorities in the deep learning world; utilizing general methods that allow models to scale in tandem with the complexity of the data is a superior approach. Now, in the era of LLMs, researchers tend to dump whole mountains of barely filtered, mostly unedited scrapes of the internet into the eager maw of a hungry model.
— roon
Recent articles
- Highlights from my appearance on the Data Renegades podcast with CL Kao and Dori Wilson - 26th November 2025
- Claude Opus 4.5, and why evaluating new LLMs is increasingly difficult - 24th November 2025
- sqlite-utils 4.0a1 has several (minor) backwards incompatible changes - 24th November 2025