Although fine-tuning can feel like the more natural option—training on data is how GPT learned all of its other knowledge, after all—we generally do not recommend it as a way to teach the model knowledge. Fine-tuning is better suited to teaching specialized tasks or styles, and is less reliable for factual recall. [...] In contrast, message inputs are like short-term memory. When you insert knowledge into a message, it's like taking an exam with open notes. With notes in hand, the model is more likely to arrive at correct answers.
— Ted Sanders, OpenAI
Recent articles
- LLM 0.22, the annotated release notes - 17th February 2025
- Run LLMs on macOS using llm-mlx and Apple's MLX framework - 15th February 2025
- URL-addressable Pyodide Python environments - 13th February 2025