The largest model in the PaLM 2 family, PaLM 2-L, is significantly smaller than the largest PaLM model but uses more training compute. Our evaluation results show that PaLM 2 models significantly outperform PaLM on a variety of tasks, including natural language generation, translation, and reasoning. These results suggest that model scaling is not the only way to improve performance. Instead, performance can be unlocked by meticulous data selection and efficient architecture/objectives. Moreover, a smaller but higher quality model significantly improves inference efficiency, reduces serving cost, and enables the model’s downstream application for more applications and users.
— PaLM 2 Technical Report, PDF
Recent articles
- The last six months in LLMs, illustrated by pelicans on bicycles - 6th June 2025
- Tips on prompting ChatGPT for UK technology secretary Peter Kyle - 3rd June 2025
- How often do LLMs snitch? Recreating Theo's SnitchBench with LLM - 31st May 2025