All the Hard Stuff Nobody Talks About when Building Products with LLMs (via) Phillip Carter shares lessons learned building LLM features for Honeycomb—hard won knowledge from building a query assistant for turning human questions into Honeycomb query filters.
This is very entertainingly written. “Use Embeddings and pray to the dot product gods that whatever distance function you use to pluck a relevant subset out of the embedding is actually relevant”.
Few-shot prompting with examples had the best results out of the approaches they tried.
The section on how they’re dealing with the threat of prompt injection—“The output of our LLM call is non-destructive and undoable, No human gets paged based on the output of our LLM call...” is particularly smart.
Recent articles
- AI assisted search-based research actually works now - 21st April 2025
- Maybe Meta's Llama claims to be open source because of the EU AI act - 19th April 2025
- Image segmentation using Gemini 2.5 - 18th April 2025