With statistical learning based systems, perfect accuracy is intrinsically hard to achieve. If you think about the success stories of machine learning, like ad targeting or fraud detection or, more recently, weather forecasting, perfect accuracy isn't the goal --- as long as the system is better than the state of the art, it is useful. Even in medical diagnosis and other healthcare applications, we tolerate a lot of error.
But when developers put AI in consumer products, people expect it to behave like software, which means that it needs to work deterministically.
Recent articles
- Highlights from my appearance on the Data Renegades podcast with CL Kao and Dori Wilson - 26th November 2025
- Claude Opus 4.5, and why evaluating new LLMs is increasingly difficult - 24th November 2025
- sqlite-utils 4.0a1 has several (minor) backwards incompatible changes - 24th November 2025