Reality is that LLMs are not AGI -- they're a big curve fit to a very large dataset. They work via memorization and interpolation. But that interpolative curve can be tremendously useful, if you want to automate a known task that's a match for its training data distribution.
Memorization works, as long as you don't need to adapt to novelty. You don't need intelligence to achieve usefulness across a set of known, fixed scenarios.
Recent articles
- Reverse engineering some updates to Claude - 31st July 2025
- Trying out Qwen3 Coder Flash using LM Studio and Open WebUI and LLM - 31st July 2025
- My 2.5 year old laptop can write Space Invaders in JavaScript now, using GLM-4.5 Air and MLX - 29th July 2025