Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitigations (via) NIST—the National Institute of Standards and Technology, a US government agency, released a 106 page report on attacks against modern machine learning models, mostly covering LLMs.
Prompt injection gets two whole sections, one on direct prompt injection (which incorporates jailbreaking as well, which they misclassify as a subset of prompt injection) and one on indirect prompt injection.
They talk a little bit about mitigations, but for both classes of attack conclude: “Unfortunately, there is no comprehensive or foolproof solution for protecting models against adversarial prompting, and future work will need to be dedicated to investigating suggested defenses for their efficacy.”
Recent articles
- Design Patterns for Securing LLM Agents against Prompt Injections - 13th June 2025
- Comma v0.1 1T and 2T - 7B LLMs trained on openly licensed text - 7th June 2025
- The last six months in LLMs, illustrated by pelicans on bicycles - 6th June 2025