The expansion of the jagged frontier of AI capability is subtle and requires a lot of experience with various models to understand what they can, and can’t, do. That is why I suggest that people and organizations keep an “impossibility list” - things that their experiments have shown that AI can definitely not do today but which it can almost do. For example, no AI can create a satisfying puzzle or mystery for you to solve, but they are getting closer. When AI models are updated, test them on your impossibility list to see if they can now do these impossible tasks.
Recent articles
- Building software on top of Large Language Models - 15th May 2025
- Trying out llama.cpp's new vision support - 10th May 2025
- Saying "hi" to Microsoft's Phi-4-reasoning - 6th May 2025