Cohere int8 & binary Embeddings - Scale Your Vector Database to Large Datasets (via) Jo Kristian Bergum told me “The accuracy retention [of binary embedding vectors] is sensitive to whether the model has been using this binarization as part of the loss function.”
Cohere provide an API for embeddings, and last week added support for returning binary vectors specifically tuned in this way.
250M embeddings (Cohere provide a downloadable dataset of 250M embedded documents from Wikipedia) at float32 (4 bytes) is 954GB.
Cohere claim that reducing to 1 bit per dimension knocks that down to 30 GB (954/32) while keeping “90-98% of the original search quality”.
Recent articles
- Qwen2.5-Coder-32B is an LLM that can code well that runs on my Mac - 12th November 2024
- Visualizing local election results with Datasette, Observable and MapLibre GL - 9th November 2024
- Project: VERDAD - tracking misinformation in radio broadcasts using Gemini 1.5 - 7th November 2024