Cohere int8 & binary Embeddings - Scale Your Vector Database to Large Datasets (via) Jo Kristian Bergum told me “The accuracy retention [of binary embedding vectors] is sensitive to whether the model has been using this binarization as part of the loss function.”
Cohere provide an API for embeddings, and last week added support for returning binary vectors specifically tuned in this way.
250M embeddings (Cohere provide a downloadable dataset of 250M embedded documents from Wikipedia) at float32 (4 bytes) is 954GB.
Cohere claim that reducing to 1 bit per dimension knocks that down to 30 GB (954/32) while keeping “90-98% of the original search quality”.
Recent articles
- LLM 0.27, the annotated release notes: GPT-5 and improved tool calling - 11th August 2025
- Qwen3-4B-Thinking: "This is art - pelicans don't ride bikes!" - 10th August 2025
- My Lethal Trifecta talk at the Bay Area AI Security Meetup - 9th August 2025