Docling. MIT licensed document extraction Python library from the Deep Search team at IBM, who released Docling v2 on October 16th.
Here's the Docling Technical Report paper from August, which provides details of two custom models: a layout analysis model for figuring out the structure of the document (sections, figures, text, tables etc) and a TableFormer model specifically for extracting structured data from tables.
Those models are available on Hugging Face.
Here's how to try out the Docling CLI interface using uvx
(avoiding the need to install it first - though since it downloads models it will take a while to run the first time):
uvx docling mydoc.pdf --to json --to md
This will output a mydoc.json
file with complex layout information and a mydoc.md
Markdown file which includes Markdown tables where appropriate.
The Python API is a lot more comprehensive. It can even extract tables as Pandas DataFrames:
from docling.document_converter import DocumentConverter converter = DocumentConverter() result = converter.convert("document.pdf") for table in result.document.tables: df = table.export_to_dataframe() print(df)
I ran that inside uv run --with docling python
. It took a little while to run, but it demonstrated that the library works.
Recent articles
- Reverse engineering some updates to Claude - 31st July 2025
- Trying out Qwen3 Coder Flash using LM Studio and Open WebUI and LLM - 31st July 2025
- My 2.5 year old laptop can write Space Invaders in JavaScript now, using GLM-4.5 Air and MLX - 29th July 2025