4 posts tagged “nvidia-spark”
2025
Using Codex CLI with gpt-oss:120b on an NVIDIA DGX Spark via Tailscale. Inspired by a YouTube comment I wrote up how I run OpenAI's Codex CLI coding agent against the gpt-oss:120b model running in Ollama on my NVIDIA DGX Spark via a Tailscale network.
It takes a little bit of work to configure but the result is I can now use Codex CLI on my laptop anywhere in the world against a self-hosted model.
I used it to build this space invaders clone.
Getting DeepSeek-OCR working on an NVIDIA Spark via brute force using Claude Code
DeepSeek released a new model yesterday: DeepSeek-OCR, a 6.6GB model fine-tuned specifically for OCR. They released it as model weights that run using PyTorch and CUDA. I got it running on the NVIDIA Spark by having Claude Code effectively brute force the challenge of getting it working on that particular hardware.
[... 1,971 words]NVIDIA DGX Spark + Apple Mac Studio = 4x Faster LLM Inference with EXO 1.0 (via) EXO Labs wired a 256GB M3 Ultra Mac Studio up to an NVIDIA DGX Spark and got a 2.8x performance boost serving Llama-3.1 8B (FP16) with an 8,192 token prompt.
Their detailed explanation taught me a lot about LLM performance.
There are two key steps in executing a prompt. The first is the prefill phase that reads the incoming prompt and builds a KV cache for each of the transformer layers in the model. This is compute-bound as it needs to process every token in the input and perform large matrix multiplications across all of the layers to initialize the model's internal state.
Performance in the prefill stage influences TTFT - time‑to‑first‑token.
The second step is the decode phase, which generates the output one token at a time. This part is limited by memory bandwidth - there's less arithmetic, but each token needs to consider the entire KV cache.
Decode performance influences TPS - tokens per second.
EXO noted that the Spark has 100 TFLOPS but only 273GB/s of memory bandwidth, making it a better fit for prefill. The M3 Ultra has 26 TFLOPS but 819GB/s of memory bandwidth, making it ideal for the decode phase.
They run prefill on the Spark, streaming the KV cache to the Mac over 10Gb Ethernet. They can start streaming earlier layers while the later layers are still being calculated. Then the Mac runs the decode phase, returning tokens faster than if the Spark had run the full process end-to-end.
NVIDIA DGX Spark: great hardware, early days for the ecosystem
NVIDIA sent me a preview unit of their new DGX Spark desktop “AI supercomputer”. I’ve never had hardware to review before! You can consider this my first ever sponsored post if you like, but they did not pay me any cash and aside from an embargo date they did not request (nor would I grant) any editorial input into what I write about the device.
[... 1,846 words]
