Simon Willison’s Weblog

Subscribe
Atom feed for vincent-d-warmerdam

2 posts tagged “vincent-d-warmerdam”

2025

smartfunc. Vincent D. Warmerdam built this ingenious wrapper around my LLM Python library which lets you build LLM wrapper functions using a decorator and a docstring:

from smartfunc import backend

@backend("gpt-4o")
def generate_summary(text: str):
    """Generate a summary of the following text: {{ text }}"""
    pass

summary = generate_summary(long_text)

It works with LLM plugins so the same pattern should work against Gemini, Claude and hundreds of others, including local models.

It integrates with more recent LLM features too, including async support and schemas, by introspecting the function signature:

class Summary(BaseModel):
    summary: str
    pros: list[str]
    cons: list[str]

@async_backend("gpt-4o-mini")
async def generate_poke_desc(text: str) -> Summary:
    "Describe the following pokemon: {{ text }}"
    pass

pokemon = await generate_poke_desc("pikachu")

Vincent also recorded a 12 minute video walking through the implementation and showing how it uses Pydantic, Python's inspect module and typing.get_type_hints() function.

# 3rd April 2025, 2:57 pm / llm, python, generative-ai, ai, llms, vincent-d-warmerdam

2024

uvtrick (via) This "fun party trick" by Vincent D. Warmerdam is absolutely brilliant and a little horrifying. The following code:

from uvtrick import Env

def uses_rich():
    from rich import print
    print("hi :vampire:")

Env("rich", python="3.12").run(uses_rich)

Executes that uses_rich() function in a fresh virtual environment managed by uv, running the specified Python version (3.12) and ensuring the rich package is available - even if it's not installed in the current environment.

It's taking advantage of the fact that uv is so fast that the overhead of getting this to work is low enough for it to be worth at least playing with the idea.

The real magic is in how uvtrick works. It's only 127 lines of code with some truly devious trickery going on.

That Env.run() method:

  • Creates a temporary directory
  • Pickles the args and kwargs and saves them to pickled_inputs.pickle
  • Uses inspect.getsource() to retrieve the source code of the function passed to run()
  • Writes that to a pytemp.py file, along with a generated if __name__ == "__main__": block that calls the function with the pickled inputs and saves its output to another pickle file called tmp.pickle

Having created the temporary Python file it executes the program using a command something like this:

uv run --with rich --python 3.12 --quiet pytemp.py

It reads the output from tmp.pickle and returns it to the caller!

# 1st September 2024, 5:03 am / uv, python, vincent-d-warmerdam