Simon Willison’s Weblog

Subscribe
Atom feed for ai

1,028 items tagged “ai”

2023

Bing: “I will not harm you unless you harm me first”

Visit Bing: "I will not harm you unless you harm me first"

Last week, Microsoft announced the new AI-powered Bing: a search interface that incorporates a language model powered chatbot that can run searches for you and summarize the results, plus do all of the other fun things that engines like GPT-3 and ChatGPT have been demonstrating over the past few months: the ability to generate poetry, and jokes, and do creative writing, and so much more.

[... 4,922 words]

I've been thinking about generative AI tools as "bicycles for the mind" (to borrow an old Steve Jobs line), but I think "electric bicycles for the mind" might be more appropriate

They can accelerate your natural abilities, you have to learn how to use them, they can give you a significant boost that some people might feel is a bit of a cheat, and they're also quite dangerous if you're not careful with them!

Me

# 13th February 2023, 6:52 pm / ai, generative-ai, llms

ChatGPT Is a Blurry JPEG of the Web. Science fiction author Ted Chiang offers a brilliant analogy for ChatGPT in this New Yorker article: it's a highly lossy compression algorithm for a vast amount of information which works like a JPEG, and uses grammatically correct interpolation to fill back in the missing gaps.

ChatGPT is so good at this form of interpolation that people find it entertaining: they’ve discovered a “blur” tool for paragraphs instead of photos, and are having a blast playing with it.

# 9th February 2023, 9:28 pm / gpt-3, generative-ai, llms, chatgpt, ai, new-yorker, ted-chiang

The 21st century is being delayed: We’re stuck with corporations building these incredible artifacts and then staring at them and realizing the questions they encode are too vast and unwieldy to be worth the risk of tackling. The future is here – and it’s locked up in a datacenter, experimented with by small groups of people who are aware of their own power and fear to exercise it. What strange times we are in.

Jack Clark, on MusicML

# 5th February 2023, 5:51 pm / ai, generative-ai, jack-clark

The most dramatic optimization to nanoGPT so far (~25% speedup) is to simply increase vocab size from 50257 to 50304 (nearest multiple of 64). This calculates added useless dimensions but goes down a different kernel path with much higher occupancy. Careful with your Powers of 2.

Andrej Karpathy

# 4th February 2023, 12:08 am / andrej-karpathy, performance, gpt-3, generative-ai, ai, llms

Exploring MusicCaps, the evaluation data released to accompany Google’s MusicLM text-to-music model

Visit Exploring MusicCaps, the evaluation data released to accompany Google's MusicLM text-to-music model

Google Research just released MusicLM: Generating Music From Text. It’s a new generative AI model that takes a descriptive prompt and produces a “high-fidelity” music track. Here’s the paper (and a more readable version using arXiv Vanity).

[... 1,323 words]

It is very important to bear in mind that this is what large language models really do. Suppose we give an LLM the prompt “The first person to walk on the Moon was ”, and suppose it responds with “Neil Armstrong”. What are we really asking here? In an important sense, we are not really asking who was the first person to walk on the Moon. What we are really asking the model is the following question: Given the statistical distribution of words in the vast public corpus of (English) text, what words are most likely to follow the sequence “The first person to walk on the Moon was ”? A good reply to this question is “Neil Armstrong”.

Murray Shanahan

# 23rd January 2023, 12:30 pm / gpt-3, prompt-engineering, ai, generative-ai, llms

Generate a comprehensive and informative answer (but no more than 80 words) for a given question solely based on the provided web Search Results (URL and Summary). You must only use information from the provided search results. Use an unbiased and journalistic tone. Use this current date and time: Wednesday, December 07, 2022 22:50:56 UTC. Combine search results together into a coherent answer. Do not repeat text. Cite search results using [${number}] notation. Only cite the most relevant results that answer the question accurately. If different results refer to different entities with the same name, write separate answers for each entity.

Perplexity AI, via a prompt injection leak attack

# 22nd January 2023, 7:47 pm / prompt-engineering, prompt-injection, ai, llms, perplexity

OpenAI Cookbook: Techniques to improve reliability (via) “Let’s think step by step” is a notoriously successful way of getting large language models to solve problems, but it turns out that’s just the tip of the iceberg: this article includes a wealth of additional examples and techniques that can be used to trick GPT-3 into being a whole lot more effective.

# 21st January 2023, 5:15 am / openai, gpt-3, ai, generative-ai, llms

Weeknotes: AI hacking and a SpatiaLite tutorial

Short weeknotes this time because the key things I worked on have already been covered here:

How to implement Q&A against your documentation with GPT3, embeddings and Datasette

Visit How to implement Q&A against your documentation with GPT3, embeddings and Datasette

If you’ve spent any time with GPT-3 or ChatGPT, you’ve likely thought about how useful it would be if you could point them at a specific, current collection of text or documentation and have it use that as part of its input for answering questions.

[... 3,491 words]

You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.

The GLM-130B License

# 10th January 2023, 10:45 pm / machine-learning, licenses, ai, generative-ai, llms

Petals (via) The challenge with large language models in the same scale ballpark as GPT-3 is that they’re large—really large. Far too big to run on a single machine at home. Petals is a fascinating attempt to address that problem: it works a little bit like BitTorrent, in that each user of Petal runs a subset of the overall language model on their machine and participates in a larger network to run inference across potentially hundreds of distributed GPUs. I tried it just now in Google Colab and it worked exactly as advertised, after downloading an 8GB subset of the 352GB BLOOM-176B model.

# 2nd January 2023, 11:29 pm / gpt-3, ai, generative-ai, llms, bloom, gpus

nanoGPT. “The simplest, fastest repository for training/finetuning medium-sized GPTs”—by Andrej Karpathy, in about 600 lines of Python.

# 2nd January 2023, 11:27 pm / andrej-karpathy, gpt-3, ai, python, generative-ai, llms

2022

Speech-to-text with Whisper: How I Use It & Why. Sumana Harihareswara’s in-depth review of Whisper, the shockingly effective open source text-to-speech transcription model release by OpenAI a few months ago. Includes an extremely thoughtful section considering the ethics of using this model—some of the most insightful short-form writing I’ve seen on AI model ethics generally.

# 22nd December 2022, 9:49 pm / openai, ai, ethics, whisper

talk.wasm (via) “Talk with an Artificial Intelligence in your browser”. Absolutely stunning demo which loads the Whisper speech recognition model (75MB) and a GPT-2 model (240MB) and executes them both in your browser via WebAssembly, then uses the Web Speech API to talk back to you. The result is a full speak-with-an-AI interface running entirely client-side. GPT-2 sadly mostly generates gibberish but the fact that this works at all is pretty astonishing.

# 7th December 2022, 10:52 pm / webassembly, gpt-3, generative-ai, openai, ai, whisper

The primary problem is that while the answers which ChatGPT produces have a high rate of being incorrect, they typically look like they might be good and the answers are very easy to produce. There are also many people trying out ChatGPT to create answers, without the expertise or willingness to verify that the answer is correct prior to posting. Because such answers are so easy to produce, a large number of people are posting a lot of answers. The volume of these answers (thousands) and the fact that the answers often require a detailed read by someone with at least some subject matter expertise in order to determine that the answer is actually bad has effectively swamped our volunteer-based quality curation infrastructure.

StackOverflow Temporary policy: ChatGPT is banned

# 6th December 2022, 12:16 am / gpt-3, generative-ai, openai, chatgpt, stackoverflow, ai, llms

AI assisted learning: Learning Rust with ChatGPT, Copilot and Advent of Code

Visit AI assisted learning: Learning Rust with ChatGPT, Copilot and Advent of Code

I’m using this year’s Advent of Code to learn Rust—with the assistance of GitHub Copilot and OpenAI’s new ChatGPT.

[... 2,661 words]

Building A Virtual Machine inside ChatGPT (via) Jonas Degrave presents a remarkable example of a creative use of ChatGPT: he prompts it to behave as a if it was a Linux shell, then runs increasingly complex sequences of commands against it and gets back surprisingly realistic results. By the end of the article he’s getting it to hallucinate responses to curl API requests run against imagined API versions of itself.

# 5th December 2022, 1:43 am / openai, gpt-3, ai, generative-ai, chatgpt, llms

A new AI game: Give me ideas for crimes to do

Visit A new AI game: Give me ideas for crimes to do

Less than a week ago OpenAI unleashed ChatGPT on the world, and it kicked off what feels like a seismic shift in many people’s understand of the capabilities of large language models.

[... 1,069 words]

These kinds of biases aren’t so much a technical problem as a sociotechnical one; ML models try to approximate biases in their underlying datasets and, for some groups of people, some of these biases are offensive or harmful. That means in the coming years there will be endless political battles about what the ‘correct’ biases are for different models to display (or not display), and we can ultimately expect there to be as many approaches as there are distinct ideologies on the planet. I expect to move into a fractal ecosystem of models, and I expect model providers will ‘shapeshift’ a single model to display different biases depending on the market it is being deployed into. This will be extraordinarily messy.

Jack Clark

# 16th November 2022, 11:04 pm / machine-learning, ai, jack-clark, generative-ai, llms

The AI that creates any picture you want, explained. Vox made this explainer video about text-to-image generative AI models back in June, months before Stable Diffusion was released and shortly before the DALL-E preview started rolling out to a wider audience. It’s a really good video—in particular the animation that explains at a high level how diffusion models work, which starts about 5m30s in.

# 10th October 2022, 3:28 am / stable-diffusion, dalle, ai, generative-ai, text-to-image

Is the AI spell-casting metaphor harmful or helpful?

Visit Is the AI spell-casting metaphor harmful or helpful?

For a few weeks now I’ve been promoting spell-casting as a metaphor for prompt design against generative AI systems such as GPT-3 and Stable Diffusion.

[... 990 words]

Getting tabular data from unstructured text with GPT-3: an ongoing experiment (via) Roberto Rocha shows how to use a carefully designed prompt (with plenty of examples) to get GPT-3 to convert unstructured textual data into a structured table.

# 5th October 2022, 3:03 am / ai, gpt-3, data-journalism, openai, prompt-engineering, generative-ai, llms

The Illustrated Stable Diffusion (via) Jay Alammar provides a detailed, clearly explained description of how the Stable Diffusion image generation model actually works under the hood..

# 5th October 2022, 2:58 am / stable-diffusion, ai, generative-ai, text-to-image

All these generative models point to the same big thing that’s about to alter culture; everyone’s going to be able to generate their own custom and subjective aesthetic realities across text, video, music (and all three) in increasingly delightful, coherent, and lengthy ways. This form of fractal reality is a double-edged sword – everyone gets to create and live in their own fantasies that can be made arbitrarily specific, and that also means everyone loses a further grip on any sense of a shared reality. Society is moving from having a centralized sense of itself to instead highly individualized choose-your-own adventure islands, all facilitated by AI. The implications of this are vast and unknowable. Get ready.

Jack Clark

# 4th October 2022, 5:29 pm / ai, jack-clark, generative-ai, llms

Exploring 10m scraped Shutterstock videos used to train Meta’s Make-A-Video text-to-video model

Visit Exploring 10m scraped Shutterstock videos used to train Meta's Make-A-Video text-to-video model

Make-A-Video is a new “state-of-the-art AI system that generates videos from text” from Meta AI. It looks incredible—it really is DALL-E / Stable Diffusion for video. And it appears to have been trained on 10m video preview clips scraped from Shutterstock.

[... 923 words]

Running training jobs across multiple nodes scales really well. A common assumption is that scale inevitably means slowdowns: more GPUs means more synchronization overhead, especially with multiple nodes communicating across a network. But we observed that the performance penalty isn’t as harsh as what you might think. Instead, we found near-linear strong scaling: fixing the global batch size and training on more GPUs led to proportional increases in training throughput. On a 1.3B parameter model, 4 nodes means a 3.9x gain over one node. On 16 nodes, it’s 14.4x. This is largely thanks to the super fast interconnects that major cloud providers have built in: @awscloud EC2 P4d instances provide 400 Gbps networking bandwidth, @Azure provides 1600 Gbps, and @OraclePaaS provides 800 Gbps.

Linden Li

# 24th September 2022, 4:03 pm / machine-learning, ai, gpus

I Resurrected “Ugly Sonic” with Stable Diffusion Textual Inversion (via) “I trained an Ugly Sonic object concept on 5 image crops from the movie trailer, with 6,000 steps [...] (on a T4 GPU, this took about 1.5 hours and cost about $0.21 on a GCP Spot instance)”

# 20th September 2022, 3:35 am / machine-learning, stable-diffusion, ai, max-woolf, generative-ai, text-to-image

An introduction to XGBoost regression. I hadn’t realized what a wealth of high quality tutorial material could be found in Kaggle notebooks. Here Carl McBride Ellis provides a very approachable and practical introduction to XGBoost, one of the leading techniques for building machine learning models against tabular data.

# 18th September 2022, 1:42 pm / machine-learning, ai