Simon Willison’s Weblog

Subscribe
Atom feed for pelican-riding-a-bicycle

33 posts tagged “pelican-riding-a-bicycle”

My benchmark for LLMs: "Generate an SVG of a pelican riding a bicycle"

2025

o3-pro. OpenAI released o3-pro today, which they describe as a "version of o3 with more compute for better responses".

It's only available via the newer Responses API. I've added it to my llm-openai-plugin plugin which uses that new API, so you can try it out like this:

llm install -U llm-openai-plugin
llm -m openai/o3-pro "Generate an SVG of a pelican riding a bicycle"

Description by o3-pro: The image is a playful, minimalist cartoon showing a white bird riding a bicycle. The bird has a simple oval body, a round head with a small black eye, and a yellow beak. Its orange feet are positioned on the bicycle’s pedals. The bicycle itself is drawn with thin black lines forming two large circular wheels and a straightforward frame. The scene has a light blue background with a soft gray oval shadow beneath the bicycle, giving the impression of ground. Overall, the illustration has a light, whimsical feel.

It's slow - generating this pelican took 124 seconds! OpenAI suggest using their background mode for o3 prompts, which I haven't tried myself yet.

o3-pro is priced at $20/million input tokens and $80/million output tokens - 10x the price of regular o3 after its 80% price drop this morning.

Ben Hylak had early access and published his notes so far in God is hungry for Context: First thoughts on o3 pro. It sounds like this model needs to be applied very thoughtfully. It comparison to o3:

It's smarter. much smarter.

But in order to see that, you need to give it a lot more context. and I'm running out of context. [...]

My co-founder Alexis and I took the the time to assemble a history of all of our past planning meetings at Raindrop, all of our goals, even record voice memos: and then asked o3-pro to come up with a plan.

We were blown away; it spit out the exact kind of concrete plan and analysis I've always wanted an LLM to create --- complete with target metrics, timelines, what to prioritize, and strict instructions on what to absolutely cut.

The plan o3 gave us was plausible, reasonable; but the plan o3 Pro gave us was specific and rooted enough that it actually changed how we are thinking about our future.

This is hard to capture in an eval.

It sounds to me like o3-pro works best when combined with tools. I don't have tool support in llm-openai-plugin yet, here's the relevant issue.

# 10th June 2025, 8:46 pm / llm, openai, llm-reasoning, llm-pricing, o3, ai, llms, llm-release, generative-ai, pelican-riding-a-bicycle

Magistral — the first reasoning model by Mistral AI. Mistral's first reasoning model is out today, in two sizes. There's a 24B Apache 2 licensed open-weights model called Magistral Small (actually Magistral-Small-2506), and a larger API-only model called Magistral Medium.

Magistral Small is available as mistralai/Magistral-Small-2506 on Hugging Face. From that model card:

Context Window: A 128k context window, but performance might degrade past 40k. Hence we recommend setting the maximum model length to 40k.

Mistral also released an official GGUF version, Magistral-Small-2506_gguf, which I ran successfully using Ollama like this:

ollama pull hf.co/mistralai/Magistral-Small-2506_gguf:Q8_0

That fetched a 25GB file. I ran prompts using a chat session with llm-ollama like this:

llm chat -m hf.co/mistralai/Magistral-Small-2506_gguf:Q8_0

Here's what I got for "Generate an SVG of a pelican riding a bicycle" (transcript here):

Blue sky and what looks like an eagle flying towards the viewer.

It's disappointing that the GGUF doesn't support function calling yet - hopefully a community variant can add that, it's one of the best ways I know of to unlock the potential of these reasoning models.

I just noticed that Ollama have their own Magistral model too, which can be accessed using:

ollama pull magistral:latest

That gets you a 14GB q4_K_M quantization - other options can be found in the full list of Ollama magistral tags.

One thing that caught my eye in the Magistral announcement:

Legal, finance, healthcare, and government professionals get traceable reasoning that meets compliance requirements. Every conclusion can be traced back through its logical steps, providing auditability for high-stakes environments with domain-specialized AI.

I guess this means the reasoning traces are fully visible and not redacted in any way - interesting to see Mistral trying to turn that into a feature that's attractive to the business clients they are most interested in appealing to.

Also from that announcement:

Our early tests indicated that Magistral is an excellent creative companion. We highly recommend it for creative writing and storytelling, with the model capable of producing coherent or — if needed — delightfully eccentric copy.

I haven't seen a reasoning model promoted for creative writing in this way before.

You can try out Magistral Medium by selecting the new "Thinking" option in Mistral's Le Chat.

Screenshot of a chat interface showing settings options. At the top is a text input field that says "Ask le Chat or @mention an agent" with a plus button, lightbulb "Think" button with up arrow, grid "Tools" button, and settings icon. Below are two toggle options: "Pure Thinking" with description "Best option for math + coding. Disables tools." (toggle is off), and "10x Speed" with lightning bolt icon and "PRO - 2 remaining today" label, described as "Same quality at 10x the speed." (toggle is on and green).

They have options for "Pure Thinking" and a separate option for "10x speed", which runs Magistral Medium at 10x the speed using Cerebras.

The new models are also available through the Mistral API. You can access them by installing llm-mistral and running llm mistral refresh to refresh the list of available models, then:

llm -m mistral/magistral-medium-latest \
  'Generate an SVG of a pelican riding a bicycle'

Claude Sonnet 4 described this as Minimalist illustration of a white bird with an orange beak riding on a dark gray motorcycle against a light blue sky with a white sun and gray ground

Here's that transcript. At 13 input and 1,236 output tokens that cost me 0.62 cents - just over half a cent.

# 10th June 2025, 4:13 pm / llm-release, mistral, llm, generative-ai, llm-reasoning, ai, llms, ollama, pelican-riding-a-bicycle, cerebras, llm-pricing

The last six months in LLMs, illustrated by pelicans on bicycles

Visit The last six months in LLMs, illustrated by pelicans on bicycles

I presented an invited keynote at the AI Engineer World’s Fair in San Francisco this week. This is my third time speaking at the event—here are my talks from October 2023 and June 2024. My topic this time was “The last six months in LLMs”—originally planned as the last year, but so much has happened that I had to reduce my scope!

[... 6,077 words]

Live blog: Claude 4 launch at Code with Claude

I’m at Anthropic’s Code with Claude event, where they are launching Claude 4. I’ll be live blogging the keynote here.

Gemini 2.5: Our most intelligent models are getting even better. A bunch of new Gemini 2.5 announcements at Google I/O today.

2.5 Flash and 2.5 Pro are both getting audio output (previously previewed in Gemini 2.0) and 2.5 Pro is getting an enhanced reasoning mode called "Deep Think" - not yet available via the API.

Available today is the latest Gemini 2.5 Flash model, gemini-2.5-flash-preview-05-20. I added support to that in llm-gemini 0.20 (and, if you're using the LLM tool-use alpha, llm-gemini 0.20a2).

I tried it out on my personal benchmark, as seen in the Google I/O keynote!

llm -m gemini-2.5-flash-preview-05-20 'Generate an SVG of a pelican riding a bicycle'

Here's what I got from the default model, with its thinking mode enabled:

The bicycle has spokes that look like a spider web. The pelican is goofy but recognizable.

Full transcript. 11 input tokens, 2,619 output tokens, 10,391 thinking tokens = 4.5537 cents.

I ran the same thing again with -o thinking_budget 0 to turn off thinking mode entirely, and got this:

The bicycle has too many bits of frame in the wrong direction. The pelican is yellow and weirdly shaped.

Full transcript. 11 input, 1,243 output = 0.0747 cents.

The non-thinking model is priced differently - still $0.15/million for input but $0.60/million for output as opposed to $3.50/million for thinking+output. The pelican it drew was 61x cheaper!

Finally, inspired by the keynote I ran this follow-up prompt to animate the more expensive pelican:

llm --cid 01jvqjqz9aha979yemcp7a4885 'Now animate it'

This one is pretty great!

The wheels and pedals are rotating and the pelican is bobbing up and down. This would be a fantastic animated pelican if the pelican didn't kind of suck!

# 20th May 2025, 8:34 pm / llm-release, gemini, llm, google, generative-ai, pelican-riding-a-bicycle, ai, llm-reasoning, llm-pricing, google-io

Tucked into today's Google I/O keynote, a blink-and-you'll miss it moment:

The pelican in the keynote was created by Alexander Chen. Here's the code they wrote with the help of Gemini, which uses p5.js to power the animation.

# 20th May 2025, 7:24 pm / pelican-riding-a-bicycle, google-io, google

In addition to my workshop the other day I'm also participating in the poster session at PyCon US this year.

This means that tomorrow (Sunday 18th May) I'll be hanging out next to my poster from 10am to 1pm in Hall A talking to people about my various projects.

I'll confess: I didn't pay close enough attention to the poster information, so when I first put my poster up it looked a little small:

My Datasette poster on a huge black poster board. It looks a bit lonely in the middle surrounded by empty space.

... so I headed to the nearest CVS and printed out some photos to better represent my interests and personality. I'm going for a "teenage bedroom" aesthetic here, I'm very happy with the result:

My Datasette poster is now surrounded by nearly 100 photos - mostly of pelicans, SVGs of pelicans and niche museums I've been to.

Here's the poster in the middle (also available as a PDF). It has columns for Datasette, sqlite-utils and LLM.

Datasette: An ecosystem of tools for finding stories in data. Three projects: Datasette is a tool for exploring and publishing data. It helps data journalists (and everyone else) take data of any shape, analyze and explore it, and publish it as an interactive website and accompanying API. There's a screenshot of the table interface against a legislators table. Datasette has over 180 plugins adding features for visualizing, editing and transforming data. datasette-cluster-map, datasette-graphql, datasette-publish-cloudrun, datasette-comments, datasette-query-assistant, datasette-extract. datasette.io. sqlite-utils is a Python library and CLI tool for manipulating SQLite databases. It aims to make the gap from “I have data” to “that data is in SQLite” as small as possible. There's a code example showing inserting three chickens into a database and configuring full-text search. And in the terminal: sqlite-utils transform places.db roadside_attractions  --rename pk id  --default name Untitled  --drop address.  sqlite-utils.datasette.io. LLM is a Python library and CLI tool for interacting with Large Language Models. It provides a plugin-based abstraction over hundreds of different models, both local and hosted, and logs every interaction with them to SQLite. LLMs are proficient at SQL and extremely good at extracting structured data from unstructured text, images and documents. LLM’s asyncio Python library powers several Datasette plugins, including datasette-query-assistant, datasette-enrichments and datasette-extract. llm.datasette.io

If you're at PyCon I'd love to talk to you about things I'm working on!

Update: Thanks to everyone who came along. Here's a 6MB photo of the poster setup. The museums were all from my www.niche-museums.com site and the pelicans riding a bicycle SVGs came from my pelican-riding-a-bicycle tag.

# 17th May 2025, 8:34 pm / pycon, llm, datasette, sqlite-utils, pelican-riding-a-bicycle, museums

Gemini 2.5 Pro Preview: even better coding performance. New Gemini 2.5 Pro "Google I/O edition" model, released a few weeks ahead of that annual developer conference.

They claim even better frontend coding performance, highlighting their #1 ranking on the WebDev Arena leaderboard, notable because it knocked Claude 3.7 Sonnet from that top spot. They also highlight "state-of-the-art video understanding" with a 84.8% score on the new-to-me VideoMME benchmark.

I rushed out a new release of llm-gemini adding support for the new gemini-2.5-pro-preview-05-06 model ID, but it turns out if I had read to the end of their post I should not have bothered:

For developers already using Gemini 2.5 Pro, this new version will not only improve coding performance but will also address key developer feedback including reducing errors in function calling and improving function calling trigger rates. The previous iteration (03-25) now points to the most recent version (05-06), so no action is required to use the improved model

I'm not a fan of this idea that a model ID with a clear date in it like gemini-2.5-pro-preview-03-25 can suddenly start pointing to a brand new model!

I used the new Gemini 2.5 Pro to summarize the conversation about itself on Hacker News using the latest version of my hn-summary.sh script:

hn-summary.sh 43906018 -m gemini-2.5-pro-preview-05-06

Here's what I got back - 30,408 input tokens, 8,535 output tokens and 3,980 thinknig tokens for a total cost of 16.316 cents.

8,535 output tokens is a lot. My system prompt includes the instruction to "Go long" - this is the first time I've seen a model really take that to heart. For comparison, here's the result of a similar experiment against the previous version of Gemini 2.5 Pro two months ago.

Update: The one time I forget to run my "Generate an SVG of a pelican riding a bicycle" test is the time that the model turns out to produce one of the best results I've seen yet!

See description below

Here's the transcript - 11 input tokens and 3,281 output tokens and 1,558 thinking tokens = 4.8404 cents.

I asked Gemini to describe that image:

llm -m gemini-2.5-pro-preview-05-06 \
  -a https://static.simonwillison.net/static/2025/gemini-latest-pelican.jpg \
  'describe image for alt text'

Here's what I got back. Gemini thought it had drawn a duck:

A cartoon illustration of a white duck with an orange beak riding a blue bicycle.

The duck has a large, oval white body and a smaller round head with a black dot eye. Its thin black wings act as arms, gripping the blue handlebars. One yellow-orange leg is visible, bent and pushing a grey pedal.

The bicycle has a blue frame with a distinctive cross-brace, a brown oval seat, and dark grey wheels with silver spokes. The entire image is set against a plain white background.

# 6th May 2025, 6:09 pm / llm-release, gemini, ai-assisted-programming, ai, llms, generative-ai, vision-llms, pelican-riding-a-bicycle

Qwen 3 offers a case study in how to effectively release a model

Visit Qwen 3 offers a case study in how to effectively release a model

Alibaba’s Qwen team released the hotly anticipated Qwen 3 model family today. The Qwen models are already some of the best open weight models—Apache 2.0 licensed and with a variety of different capabilities (including vision and audio input/output).

[... 1,462 words]

Start building with Gemini 2.5 Flash (via) Google Gemini's latest model is Gemini 2.5 Flash, available in (paid) preview as gemini-2.5-flash-preview-04-17.

Building upon the popular foundation of 2.0 Flash, this new version delivers a major upgrade in reasoning capabilities, while still prioritizing speed and cost. Gemini 2.5 Flash is our first fully hybrid reasoning model, giving developers the ability to turn thinking on or off. The model also allows developers to set thinking budgets to find the right tradeoff between quality, cost, and latency.

Gemini AI Studio product lead Logan Kilpatrick says:

This is an early version of 2.5 Flash, but it already shows huge gains over 2.0 Flash.

You can fully turn off thinking if needed and use this model as a drop in replacement for 2.0 Flash.

I added support to the new model in llm-gemini 0.18. Here's how to try it out:

llm install -U llm-gemini
llm -m gemini-2.5-flash-preview-04-17 'Generate an SVG of a pelican riding a bicycle'

Here's that first pelican, using the default setting where Gemini Flash 2.5 makes its own decision in terms of how much "thinking" effort to apply:

Described below

Here's the transcript. This one used 11 input tokens, 4,266 output tokens and 2,702 "thinking" tokens.

I asked the model to "describe" that image and it could tell it was meant to be a pelican:

A simple illustration on a white background shows a stylized pelican riding a bicycle. The pelican is predominantly grey with a black eye and a prominent pink beak pouch. It is positioned on a black line-drawn bicycle with two wheels, a frame, handlebars, and pedals.

The way the model is priced is a little complicated. If you have thinking enabled, you get charged $0.15/million tokens for input and $3.50/million for output. With thinking disabled those output tokens drop to $0.60/million. I've added these to my pricing calculator.

For comparison, Gemini 2.0 Flash is $0.10/million input and $0.40/million for output.

So my first prompt - 11 input and 4,266+2,702 =6,968 output (with thinking enabled), cost 2.439 cents.

Let's try 2.5 Flash again with thinking disabled:

llm -m gemini-2.5-flash-preview-04-17 'Generate an SVG of a pelican riding a bicycle' -o thinking_budget 0

Described below, again

11 input, 1705 output. That's 0.1025 cents. Transcript here - it still shows 25 thinking tokens even though I set the thinking budget to 0 - Logan confirms that this will still be billed at the lower rate:

In some rare cases, the model still thinks a little even with thinking budget = 0, we are hoping to fix this before we make this model stable and you won't be billed for thinking. The thinking budget = 0 is what triggers the billing switch.

Here's Gemini 2.5 Flash's self-description of that image:

A minimalist illustration shows a bright yellow bird riding a bicycle. The bird has a simple round body, small wings, a black eye, and an open orange beak. It sits atop a simple black bicycle frame with two large circular black wheels. The bicycle also has black handlebars and black and yellow pedals. The scene is set against a solid light blue background with a thick green stripe along the bottom, suggesting grass or ground.

And finally, let's ramp the thinking budget up to the maximum:

llm -m gemini-2.5-flash-preview-04-17 'Generate an SVG of a pelican riding a bicycle' -o thinking_budget 24576

Described below

I think it over-thought this one. Transcript - 5,174 output tokens and 3,023 thinking tokens. A hefty 2.8691 cents!

A simple, cartoon-style drawing shows a bird-like figure riding a bicycle. The figure has a round gray head with a black eye and a large, flat orange beak with a yellow stripe on top. Its body is represented by a curved light gray shape extending from the head to a smaller gray shape representing the torso or rear. It has simple orange stick legs with round feet or connections at the pedals. The figure is bent forward over the handlebars in a cycling position. The bicycle is drawn with thick black outlines and has two large wheels, a frame, and pedals connected to the orange legs. The background is plain white, with a dark gray line at the bottom representing the ground.

One thing I really appreciate about Gemini 2.5 Flash's approach to SVGs is that it shows very good taste in CSS, comments and general SVG class structure. Here's a truncated extract - I run a lot of these SVG tests against different models and this one has a coding style that I particularly enjoy. (Gemini 2.5 Pro does this too).

<svg width="800" height="500" viewBox="0 0 800 500" xmlns="http://www.w3.org/2000/svg">
  <style>
    .bike-frame { fill: none; stroke: #333; stroke-width: 8; stroke-linecap: round; stroke-linejoin: round; }
    .wheel-rim { fill: none; stroke: #333; stroke-width: 8; }
    .wheel-hub { fill: #333; }
    /* ... */
    .pelican-body { fill: #d3d3d3; stroke: black; stroke-width: 3; }
    .pelican-head { fill: #d3d3d3; stroke: black; stroke-width: 3; }
    /* ... */
  </style>
  <!-- Ground Line -->
  <line x1="0" y1="480" x2="800" y2="480" stroke="#555" stroke-width="5"/>
  <!-- Bicycle -->
  <g id="bicycle">
    <!-- Wheels -->
    <circle class="wheel-rim" cx="250" cy="400" r="70"/>
    <circle class="wheel-hub" cx="250" cy="400" r="10"/>
    <circle class="wheel-rim" cx="550" cy="400" r="70"/>
    <circle class="wheel-hub" cx="550" cy="400" r="10"/>
    <!-- ... -->
  </g>
  <!-- Pelican -->
  <g id="pelican">
    <!-- Body -->
    <path class="pelican-body" d="M 440 330 C 480 280 520 280 500 350 C 480 380 420 380 440 330 Z"/>
    <!-- Neck -->
    <path class="pelican-neck" d="M 460 320 Q 380 200 300 270"/>
    <!-- Head -->
    <circle class="pelican-head" cx="300" cy="270" r="35"/>
    <!-- ... -->

The LM Arena leaderboard now has Gemini 2.5 Flash in joint second place, just behind Gemini 2.5 Pro and tied with ChatGPT-4o-latest, Grok-3 and GPT-4.5 Preview.

Screenshot of a table showing AI model rankings with columns Rank* (UB), Rank (StyleCtrl), Model, Arena Score, 95% CI, Votes, Organization, and License. The rows show data for: Gemini-2.5-Pro-Exp-03-25 ranked 1/1 with score 1439, CI +7/-5, 9013 Votes, Organization Google, License Proprietary. ChatGPT-4o-latest (2025-03-26) ranked 2/2 with score 1407, CI +6/-6, 8261 Votes, Organization OpenAI, License Proprietary. Grok-3-Preview-02-24 ranked 2/4 with score 1402, CI +5/-3, 14849 Votes, Organization xAI, License Proprietary. GPT-4.5-Preview ranked 2/2 with score 1398, CI +5/-6, 14520 Votes, Organization OpenAI, License Proprietary. Gemini-2.5-Flash-Preview-04-17 ranked 2/4 with score 1392, CI +10/-13, 3325 Votes, Organization Google, License Proprietary

# 17th April 2025, 8:56 pm / llm-release, gemini, llm, google, llm-reasoning, llm-pricing, llms, pelican-riding-a-bicycle, svg, logan-kilpatrick, chatbot-arena

GPT-4.1: Three new million token input models from OpenAI, including their cheapest model yet

Visit GPT-4.1: Three new million token input models from OpenAI, including their cheapest model yet

OpenAI introduced three new models this morning: GPT-4.1, GPT-4.1 mini and GPT-4.1 nano. These are API-only models right now, not available through the ChatGPT interface (though you can try them out in OpenAI’s API playground). All three models can handle 1,047,576 tokens of input and 32,768 tokens of output, and all three have a May 31, 2024 cut-off date (their previous models were mostly September 2023).

[... 1,124 words]

Putting Gemini 2.5 Pro through its paces

Visit Putting Gemini 2.5 Pro through its paces

There’s a new release from Google Gemini this morning: the first in the Gemini 2.5 series. Google call it “a thinking model, designed to tackle increasingly complex problems”. It’s already sat at the top of the LM Arena leaderboard, and from initial impressions looks like it may deserve that top spot.

[... 2,400 words]

deepseek-ai/DeepSeek-V3-0324. Chinese AI lab DeepSeek just released the latest version of their enormous DeepSeek v3 model, baking the release date into the name DeepSeek-V3-0324.

The license is MIT (that's new - previous DeepSeek v3 had a custom license), the README is empty and the release adds up a to a total of 641 GB of files, mostly of the form model-00035-of-000163.safetensors.

The model only came out a few hours ago and MLX developer Awni Hannun already has it running at >20 tokens/second on a 512GB M3 Ultra Mac Studio ($9,499 of ostensibly consumer-grade hardware) via mlx-lm and this mlx-community/DeepSeek-V3-0324-4bit 4bit quantization, which reduces the on-disk size to 352 GB.

I think that means if you have that machine you can run it with my llm-mlx plugin like this, but I've not tried myself!

llm mlx download-model mlx-community/DeepSeek-V3-0324-4bit
llm chat -m mlx-community/DeepSeek-V3-0324-4bit

The new model is also listed on OpenRouter. You can try a chat at openrouter.ai/chat?models=deepseek/deepseek-chat-v3-0324:free.

Here's what the chat interface gave me for "Generate an SVG of a pelican riding a bicycle":

There's a pelican, and a bicycle, but both of them look disassembled.

I have two API keys with OpenRouter - one of them worked with the model, the other gave me a No endpoints found matching your data policy error - I think because I had a setting on that key disallowing models from training on my activity. The key that worked was a free key with no attached billing credentials.

For my working API key the llm-openrouter plugin let me run a prompt like this:

llm install llm-openrouter
llm keys set openrouter
# Paste key here
llm -m openrouter/deepseek/deepseek-chat-v3-0324:free "best fact about a pelican"

Here's that "best fact" - the terminal output included Markdown and an emoji combo, here that's rendered.

One of the most fascinating facts about pelicans is their unique throat pouch, called a gular sac, which can hold up to 3 gallons (11 liters) of water—three times more than their stomach!

Here’s why it’s amazing:
- Fishing Tool: They use it like a net to scoop up fish, then drain the water before swallowing.
- Cooling Mechanism: On hot days, pelicans flutter the pouch to stay cool by evaporating water.
- Built-in "Shopping Cart": Some species even use it to carry food back to their chicks.

Bonus fact: Pelicans often fish cooperatively, herding fish into shallow water for an easy catch.

Would you like more cool pelican facts? 🐦🌊

In putting this post together I got Claude to build me this new tool for finding the total on-disk size of a Hugging Face repository, which is available in their API but not currently displayed on their website.

Update: Here's a notable independent benchmark from Paul Gauthier:

DeepSeek's new V3 scored 55% on aider's polyglot benchmark, significantly improving over the prior version. It's the #2 non-thinking/reasoning model, behind only Sonnet 3.7. V3 is competitive with thinking models like R1 & o3-mini.

# 24th March 2025, 3:04 pm / llm-release, hugging-face, generative-ai, deepseek, ai, llms, mlx, llm, ai-assisted-programming, tools, pelican-riding-a-bicycle, openrouter, local-llms

OpenAI platform: o1-pro. OpenAI have a new most-expensive model: o1-pro can now be accessed through their API at a hefty $150/million tokens for input and $600/million tokens for output. That's 10x the price of their o1 and o1-preview models and a full 1,000x times more expensive than their cheapest model, gpt-4o-mini!

Aside from that it has mostly the same features as o1: a 200,000 token context window, 100,000 max output tokens, Sep 30 2023 knowledge cut-off date and it supports function calling, structured outputs and image inputs.

o1-pro doesn't support streaming, and most significantly for developers is the first OpenAI model to only be available via their new Responses API. This means tools that are built against their Chat Completions API (like my own LLM) have to do a whole lot more work to support the new model - my issue for that is here.

Since LLM doesn't support this new model yet I had to make do with curl:

curl https://api.openai.com/v1/responses \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $(llm keys get openai)" \
  -d '{
    "model": "o1-pro",
    "input": "Generate an SVG of a pelican riding a bicycle"
  }'

Here's the full JSON I got back - 81 input tokens and 1552 output tokens for a total cost of 94.335 cents.

Clearly a bird riding a bicycle. The pedals are in the wrong place and the bird doesn't quite have the majestic beak of a pelican.

I took a risk and added "reasoning": {"effort": "high"} to see if I could get a better pelican with more reasoning:

curl https://api.openai.com/v1/responses \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $(llm keys get openai)" \
  -d '{
    "model": "o1-pro",
    "input": "Generate an SVG of a pelican riding a bicycle",
    "reasoning": {"effort": "high"}
  }'

Surprisingly that used less output tokens - 1459 compared to 1552 earlier (cost: 88.755 cents) - producing this JSON which rendered as a slightly better pelican:

A bit better - no pedals, so they cannot be in the wrong place. The bird has a slightly more majestic beak.

It was cheaper because while it spent 960 reasoning tokens as opposed to 704 for the previous pelican it omitted the explanatory text around the SVG, saving on total output.

# 19th March 2025, 11:54 pm / o1, llm, openai, llm-reasoning, ai, llms, llm-release, generative-ai, pelican-riding-a-bicycle, llm-pricing

mlx-community/OLMo-2-0325-32B-Instruct-4bit (via) OLMo 2 32B claims to be "the first fully-open model (all data, code, weights, and details are freely available) to outperform GPT3.5-Turbo and GPT-4o mini". Thanks to the MLX project here's a recipe that worked for me to run it on my Mac, via my llm-mlx plugin.

To install the model:

llm install llm-mlx
llm mlx download-model mlx-community/OLMo-2-0325-32B-Instruct-4bit

That downloads 17GB to ~/.cache/huggingface/hub/models--mlx-community--OLMo-2-0325-32B-Instruct-4bit.

To start an interactive chat with OLMo 2:

llm chat -m mlx-community/OLMo-2-0325-32B-Instruct-4bit

Or to run a prompt:

llm -m mlx-community/OLMo-2-0325-32B-Instruct-4bit 'Generate an SVG of a pelican riding a bicycle' -o unlimited 1

The -o unlimited 1 removes the cap on the number of output tokens - the default for llm-mlx is 1024 which isn't enough to attempt to draw a pelican.

The pelican it drew is refreshingly abstract:

Blue and black wiggly lines looking more like a circuit diagram than a pelican riding a bicycle

# 16th March 2025, 3:30 am / llm, generative-ai, mlx, ai2, ai, llms, pelican-riding-a-bicycle, local-llms

Notes on Google’s Gemma 3

Visit Notes on Google's Gemma 3

Google’s Gemma team released an impressive new model today (under their not-open-source Gemma license). Gemma 3 comes in four sizes—1B, 4B, 12B, and 27B—and while 1B is text-only the larger three models are all multi-modal for vision:

[... 804 words]

Initial impressions of GPT-4.5

Visit Initial impressions of GPT-4.5

GPT-4.5 is out today as a “research preview”—it’s available to OpenAI Pro ($200/month) customers and to developers with an API key. OpenAI also published a GPT-4.5 system card.

[... 745 words]

Claude 3.7 Sonnet and Claude Code. Anthropic released Claude 3.7 Sonnet today - skipping the name "Claude 3.6" because the Anthropic user community had already started using that as the unofficial name for their October update to 3.5 Sonnet.

As you may expect, 3.7 Sonnet is an improvement over 3.5 Sonnet - and is priced the same, at $3/million tokens for input and $15/m output.

The big difference is that this is Anthropic's first "reasoning" model - applying the same trick that we've now seen from OpenAI o1 and o3, Grok 3, Google Gemini 2.0 Thinking, DeepSeek R1 and Qwen's QwQ and QvQ. The only big model families without an official reasoning model now are Mistral and Meta's Llama.

I'm still working on adding support to my llm-anthropic plugin but I've got enough working code that I was able to get it to draw me a pelican riding a bicycle. Here's the non-reasoning model:

A very good attempt

And here's that same prompt but with "thinking mode" enabled:

A very good attempt

Here's the transcript for that second one, which mixes together the thinking and the output tokens. I'm still working through how best to differentiate between those two types of token.

Claude 3.7 Sonnet has a training cut-off date of Oct 2024 - an improvement on 3.5 Haiku's July 2024 - and can output up to 64,000 tokens in thinking mode (some of which are used for thinking tokens) and up to 128,000 if you enable a special header:

Claude 3.7 Sonnet can produce substantially longer responses than previous models with support for up to 128K output tokens (beta)---more than 15x longer than other Claude models. This expanded capability is particularly effective for extended thinking use cases involving complex reasoning, rich code generation, and comprehensive content creation.

This feature can be enabled by passing an anthropic-beta header of output-128k-2025-02-19.

Anthropic's other big release today is a preview of Claude Code - a CLI tool for interacting with Claude that includes the ability to prompt Claude in terminal chat and have it read and modify files and execute commands. This means it can both iterate on code and execute tests, making it an extremely powerful "agent" for coding assistance.

Here's Anthropic's documentation on getting started with Claude Code, which uses OAuth (a first for Anthropic's API) to authenticate against your API account, so you'll need to configure billing.

Short version:

npm install -g @anthropic-ai/claude-code
claude

It can burn a lot of tokens so don't be surprised if a lengthy session with it adds up to single digit dollars of API spend.

# 24th February 2025, 8:25 pm / llm, anthropic, claude, ai-agents, llm-reasoning, ai, llms, ai-assisted-programming, generative-ai, pelican-riding-a-bicycle, oauth, llm-release, cli, coding-agents, claude-code

Andrej Karpathy’s initial impressions of Grok 3. Andrej has the most detailed analysis I've seen so far of xAI's Grok 3 release from last night. He runs through a bunch of interesting test prompts, and concludes:

As far as a quick vibe check over ~2 hours this morning, Grok 3 + Thinking feels somewhere around the state of the art territory of OpenAI's strongest models (o1-pro, $200/month), and slightly better than DeepSeek-R1 and Gemini 2.0 Flash Thinking. Which is quite incredible considering that the team started from scratch ~1 year ago, this timescale to state of the art territory is unprecedented.

I was delighted to see him include my Generate an SVG of a pelican riding a bicycle benchmark in his tests:

Grok 3's pelicans are pretty good, though I still slightly prefer Claude 3.5 Sonnet's.

Grok 3 is currently sat at the top of the LLM Chatbot Arena (across all of their categories) so it's doing very well based on vibes for the voters there.

# 18th February 2025, 4:46 pm / andrej-karpathy, llms, ai, generative-ai, pelican-riding-a-bicycle, grok, llm-release, chatbot-arena

Gemini 2.0 is now available to everyone. Big new Gemini 2.0 releases today:

  • Gemini 2.0 Pro (Experimental) is Google's "best model yet for coding performance and complex prompts" - currently available as a free preview.
  • Gemini 2.0 Flash is now generally available.
  • Gemini 2.0 Flash-Lite looks particularly interesting:

    We’ve gotten a lot of positive feedback on the price and speed of 1.5 Flash. We wanted to keep improving quality, while still maintaining cost and speed. So today, we’re introducing 2.0 Flash-Lite, a new model that has better quality than 1.5 Flash, at the same speed and cost. It outperforms 1.5 Flash on the majority of benchmarks.

That means Gemini 2.0 Flash-Lite is priced at 7.5c/million input tokens and 30c/million output tokens - half the price of OpenAI's GPT-4o mini (15c/60c).

Gemini 2.0 Flash isn't much more expensive: 10c/million for text/image input, 70c/million for audio input, 40c/million for output. Again, cheaper than GPT-4o mini.

I pushed a new LLM plugin release, llm-gemini 0.10, adding support for the three new models:

llm install -U llm-gemini
llm keys set gemini
# paste API key here
llm -m gemini-2.0-flash "impress me"
llm -m gemini-2.0-flash-lite-preview-02-05 "impress me"
llm -m gemini-2.0-pro-exp-02-05 "impress me"

Here's the output for those three prompts.

I ran Generate an SVG of a pelican riding a bicycle through the three new models. Here are the results, cheapest to most expensive:

gemini-2.0-flash-lite-preview-02-05

This is not great. The bicycle is a trapezoid. The pelican is very warped and has a orange diamond beak above its head.

gemini-2.0-flash

The bicycle is better but the pelican is yellow and looks more like a baby chick. Its beak is squashed against the side of the image.

gemini-2.0-pro-exp-02-05

This one is pleasingly avant-garde. The bicycle does at least have two wheels joined by a frame. The pelican is a fun shape, and it has a beak with a curved orange top and a curved yellow bottom.

Full transcripts here.

I also ran the same prompt I tried with o3-mini the other day:

cd /tmp
git clone https://github.com/simonw/datasette
cd datasette
files-to-prompt datasette -e py -c | \
  llm -m gemini-2.0-pro-exp-02-05 \
  -s 'write extensive documentation for how the permissions system works, as markdown' \
  -o max_output_tokens 10000

Here's the result from that - you can compare that to o3-mini's result here.

# 5th February 2025, 4:37 pm / gemini, llm, google, generative-ai, llm-pricing, ai, llms, pelican-riding-a-bicycle, llm-release, files-to-prompt

DeepSeek-R1 and exploring DeepSeek-R1-Distill-Llama-8B

Visit DeepSeek-R1 and exploring DeepSeek-R1-Distill-Llama-8B

DeepSeek are the Chinese AI lab who dropped the best currently available open weights LLM on Christmas day, DeepSeek v3. That model was trained in part using their unreleased R1 “reasoning” model. Today they’ve released R1 itself, along with a whole family of new models derived from that base.

[... 1,276 words]

microsoft/phi-4. Here's the official release of Microsoft's Phi-4 LLM, now officially under an MIT license.

A few weeks ago I covered the earlier unofficial versions, where I talked about how the model used synthetic training data in some really interesting ways.

It benchmarks favorably compared to GPT-4o, suggesting this is yet another example of a GPT-4 class model that can run on a good laptop.

The model already has several available community quantizations. I ran the mlx-community/phi-4-4bit one (a 7.7GB download) using mlx-llm like this:

uv run --with 'numpy<2' --with mlx-lm python -c '
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/phi-4-4bit")

prompt = "Generate an SVG of a pelican riding a bicycle"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True, max_tokens=2048)
print(response)'

Here's what I got back.

Hardly recognizable pelican on a bicycle

Update: The model is now available via Ollama, so you can fetch a 9.1GB model file using ollama run phi4, after which it becomes available via the llm-ollama plugin.

# 8th January 2025, 5:57 pm / phi, generative-ai, ai, microsoft, llms, uv, pelican-riding-a-bicycle, llm, ollama, llm-release, local-llms, mlx

2024

Gemini 2.0 Flash “Thinking mode”

Visit Gemini 2.0 Flash "Thinking mode"

Those new model releases just keep on flowing. Today it’s Google’s snappily named gemini-2.0-flash-thinking-exp, their first entrant into the o1-style inference scaling class of models. I posted about a great essay about the significance of these just this morning.

[... 569 words]

Veo 2 (via) Google's text-to-video model, now available via waitlisted preview. I got through the waitlist and tried the same prompt I ran against OpenAI's Sora last week:

A pelican riding a bicycle along a coastal path overlooking a harbor

It generated these four videos:

Here's the larger video.

# 16th December 2024, 11:31 pm / ai, google, generative-ai, pelican-riding-a-bicycle, text-to-video

<model-viewer> Web Component by Google (via) I learned about this Web Component from Claude when looking for options to render a .glb file on a web page. It's very pleasant to use:

<model-viewer style="width: 100%; height: 200px"
  src="https://static.simonwillison.net/static/cors-allow/2024/a-pelican-riding-a-bicycle.glb"
  camera-controls="1" auto-rotate="1"
></model-viewer>

Here it is showing a 3D pelican on a bicycle I created while trying out BlenderGPT, a new prompt-driven 3D asset creating tool (my prompt was "a pelican riding a bicycle"). There's a comment from BlenderGPT's creator on Hacker News explaining that it's currently using Microsoft's TRELLIS model.

# 13th December 2024, 6:46 pm / web-components, google, generative-ai, ai, 3d, blender, microsoft, claude, pelican-riding-a-bicycle

Sora (via) OpenAI's released their long-threatened Sora text-to-video model this morning, available in most non-European countries to subscribers to ChatGPT Plus ($20/month) or Pro ($200/month).

Here's what I got for the very first test prompt I ran through it:

A pelican riding a bicycle along a coastal path overlooking a harbor

The Pelican inexplicably morphs to cycle in the opposite direction half way through, but I don't see that as a particularly significant issue: Sora is built entirely around the idea of directly manipulating and editing and remixing the clips it generates, so the goal isn't to have it produce usable videos from a single prompt.

# 9th December 2024, 6:35 pm / video, generative-ai, openai, pelican-riding-a-bicycle, ai, text-to-video

I can now run a GPT-4 class model on my laptop

Visit I can now run a GPT-4 class model on my laptop

Meta’s new Llama 3.3 70B is a genuinely GPT-4 class Large Language Model that runs on my laptop.

[... 2,905 words]

New Gemini model: gemini-exp-1206. Google's Jeff Dean:

Today’s the one year anniversary of our first Gemini model releases! And it’s never looked better.

Check out our newest release, Gemini-exp-1206, in Google AI Studio and the Gemini API!

I upgraded my llm-gemini plugin to support the new model and released it as version 0.6 - you can install or upgrade it like this:

llm install -U llm-gemini

Running my SVG pelican on a bicycle test prompt:

llm -m gemini-exp-1206 "Generate an SVG of a pelican riding a bicycle"

Provided this result, which is the best I've seen from any model:

Blue sky, green grass, bicycle looks good, bird riding it is almost recognizable as a pelican

Here's the full output - I enjoyed these two pieces of commentary from the model:

<polygon>: Shapes the distinctive pelican beak, with an added line for the lower mandible.
[...]
transform="translate(50, 30)": This attribute on the pelican's <g> tag moves the entire pelican group 50 units to the right and 30 units down, positioning it correctly on the bicycle.

The new model is also currently in top place on the Chatbot Arena.

Update: a delightful bonus, here's what I got from the follow-up prompt:

llm -c "now animate it"

The pelican is now animated - it is pedaling and its wing moves

Transcript here.

# 6th December 2024, 6:05 pm / gemini, llm, ai, llms, svg, releases, google, generative-ai, pelican-riding-a-bicycle, llm-release, chatbot-arena

QwQ: Reflect Deeply on the Boundaries of the Unknown. Brand new openly licensed (Apache 2) model from Alibaba Cloud's Qwen team, this time clearly inspired by OpenAI's work on reasoning in o1.

I love the flowery language they use to introduce the new model:

Through deep exploration and countless trials, we discovered something profound: when given time to ponder, to question, and to reflect, the model’s understanding of mathematics and programming blossoms like a flower opening to the sun. Just as a student grows wiser by carefully examining their work and learning from mistakes, our model achieves deeper insight through patient, thoughtful analysis.

It's already available through Ollama as a 20GB download. I initially ran it like this:

ollama run qwq

This downloaded the model and started an interactive chat session. I tried the classic "how many rs in strawberry?" and got this lengthy but correct answer, which concluded:

Wait, but maybe I miscounted. Let's list them: 1. s 2. t 3. r 4. a 5. w 6. b 7. e 8. r 9. r 10. y Yes, definitely three "r"s. So, the word "strawberry" contains three "r"s.

Then I switched to using LLM and the llm-ollama plugin. I tried prompting it for Python that imports CSV into SQLite:

Write a Python function import_csv(conn, url, table_name) which acceopts a connection to a SQLite databse and a URL to a CSV file and the name of a table - it then creates that table with the right columns and imports the CSV data from that URL

It thought through the different steps in detail and produced some decent looking code.

Finally, I tried this:

llm -m qwq 'Generate an SVG of a pelican riding a bicycle'

For some reason it answered in Simplified Chinese. It opened with this:

生成一个SVG图像,内容是一只鹈鹕骑着一辆自行车。这听起来挺有趣的!我需要先了解一下什么是SVG,以及如何创建这样的图像。

Which translates (using Google Translate) to:

Generate an SVG image of a pelican riding a bicycle. This sounds interesting! I need to first understand what SVG is and how to create an image like this.

It then produced a lengthy essay discussing the many aspects that go into constructing a pelican on a bicycle - full transcript here. After a full 227 seconds of constant output it produced this as the final result.

You can tell which bit is the bicycle and which bit is the pelican. It's quite elegant.

I think that's pretty good!

# 27th November 2024, 11:59 pm / llm, ollama, generative-ai, ai, qwen, llms, local-llms, pelican-riding-a-bicycle, llm-reasoning, llm-release

Say hello to gemini-exp-1121. Google Gemini's Logan Kilpatrick on Twitter:

Say hello to gemini-exp-1121! Our latest experimental gemini model, with:

  • significant gains on coding performance
  • stronger reasoning capabilities
  • improved visual understanding

Available on Google AI Studio and the Gemini API right now

The 1121 in the name is a release date of the 21st November. This comes fast on the heels of last week's gemini-exp-1114.

Both of these new experimental Gemini models have seen moments at the top of the Chatbot Arena. gemini-exp-1114 took the top spot a few days ago, and then lost it to a new OpenAI model called "ChatGPT-4o-latest (2024-11-20)"... only for the new gemini-exp-1121 to hold the top spot right now.

(These model names are all so, so bad.)

I released llm-gemini 0.4.2 with support for the new model - this should have been 0.5 but I already have a 0.5a0 alpha that depends on an unreleased feature in LLM core.

I tried my pelican benchmark:

llm -m gemini-exp-1121 'Generate an SVG of a pelican riding a bicycle'
Not great at all, description follows

Since Gemini is a multi-modal vision model, I had it describe the image it had created back to me (by feeding it a PNG render):

llm -m gemini-exp-1121 describe -a pelican.png

And got this description, which is pretty great:

The image shows a simple, stylized drawing of an insect, possibly a bee or an ant, on a vehicle. The insect is composed of a large yellow circle for the body and a smaller yellow circle for the head. It has a black dot for an eye, a small orange oval for a beak or mouth, and thin black lines for antennae and legs. The insect is positioned on top of a simple black and white vehicle with two black wheels. The drawing is abstract and geometric, using basic shapes and a limited color palette of black, white, yellow, and orange.

Update: Logan confirmed on Twitter that these models currently only have a 32,000 token input, significantly less than the rest of the Gemini family.

# 22nd November 2024, 6:14 am / vision-llms, gemini, llm, google, generative-ai, ai, llms, logan-kilpatrick, pelican-riding-a-bicycle, llm-release, chatbot-arena