Simon Willison’s Weblog

Subscribe

Monday, 29th September 2025

Given a week or two to try out ideas and search the literature, I’m pretty sure that Freek and I could’ve solved this problem ourselves. Instead, though, I simply asked GPT5-Thinking. After five minutes, it gave me something confident, plausible-looking, and (I could tell) wrong. But rather than laughing at the silly AI like a skeptic might do, I told GPT5 how I knew it was wrong. It thought some more, apologized, and tried again, and gave me something better. So it went for a few iterations, much like interacting with a grad student or colleague. [...]

Now, in September 2025, I’m here to tell you that AI has finally come for what my experience tells me is the most quintessentially human of all human intellectual activities: namely, proving oracle separations between quantum complexity classes. Right now, it almost certainly can’t write the whole research paper (at least if you want it to be correct and good), but it can help you get unstuck if you otherwise know what you’re doing, which you might call a sweet spot.

Scott Aaronson, UT Austin Quantum Information Center

# 12:52 am / quantum-computing, ai, generative-ai, llms, llm-reasoning, gpt-5

Armin Ronacher: 90% (via) The idea of AI writing "90% of the code" to-date has mostly been expressed by people who sell AI tooling.

Over the last few months, I've increasingly seen the same idea come coming much more credible sources.

Armin is the creator of a bewildering array of valuable open source projects - Flask, Jinja, Click, Werkzeug, and many more. When he says something like this it's worth paying attention:

For the infrastructure component I started at my new company, I’m probably north of 90% AI-written code.

For anyone who sees this as a threat to their livelihood as programmers, I encourage you to think more about this section:

It is easy to create systems that appear to behave correctly but have unclear runtime behavior when relying on agents. For instance, the AI doesn’t fully comprehend threading or goroutines. If you don’t keep the bad decisions at bay early it, you won’t be able to operate it in a stable manner later.

Here’s an example: I asked it to build a rate limiter. It “worked” but lacked jitter and used poor storage decisions. Easy to fix if you know rate limiters, dangerous if you don’t.

In order to use these tools at this level you need to know the difference between goroutines and threads. You need to understand why a rate limiter might want to"jitter" and what that actually means. You need to understand what "rate limiting" is and why you might need it!

These tools do not replace programmers. They allow us to apply our expertise at a higher level and amplify the value we can provide to other people.

# 4:03 pm / armin-ronacher, careers, ai, generative-ai, llms, ai-assisted-programming

Claude Sonnet 4.5 is probably the “best coding model in the world” (at least for now)

Visit Claude Sonnet 4.5 is probably the "best coding model in the world" (at least for now)

Anthropic released Claude Sonnet 4.5 today, with a very bold set of claims:

[... 1,161 words]