688 items tagged “javascript”
2024
MDN Browser Support Timelines. I complained on Hacker News today that I wished the MDN browser compatibility ables - like this one for the Web Locks API - included an indication as to when each browser was released rather than just the browser numbers.
It turns out they do! If you click on each browser version in turn you can see an expanded area showing the browser release date:
There's even an inline help tip telling you about the feature, which I've been studiously ignoring for years.
I want to see all the information at once without having to click through each browser. I had a poke around in the Firefox network tab and found https://bcd.developer.mozilla.org/bcd/api/v0/current/api.Lock.json - a JSON document containing browser support details (with release dates) for that API... and it was served using access-control-allow-origin: *
which means I can hit it from my own little client-side applications.
I decided to build something with an autocomplete drop-down interface for selecting the API. That meant I'd need a list of all of the available APIs, and I used GitHub code search to find that in the mdn/browser-compat-data repository, in the api/
directory.
I needed the list of files in that directory for my autocomplete. Since there are just over 1,000 of those the regular GitHub contents API won't return them all, so I switched to the tree API instead.
Here's the finished tool - source code here:
95% of the code was written by LLMs, but I did a whole lot of assembly and iterating to get it to the finished state. Three of the transcripts for that:
- Web Locks API Browser Support Timeline in which I paste in the original API JSON and ask it to come up with a timeline visualization for it.
- Enhancing API Feature Display with URL Hash where I dumped in a more complex JSON example to get it to show multiple APIs on the same page, and also had it add
#fragment
bookmarking to the tool - Fetch GitHub API Data Hierarchy where I got it to write me an async JavaScript function for fetching a directory listing from that tree API.
ChainForge. I'm still on the hunt for good options for running evaluations against prompts. ChainForge offers an interesting approach, calling itself "an open-source visual programming environment for prompt engineering".
The interface is one of those boxes-and-lines visual programming tools, which reminds me of Yahoo Pipes.
It's open source (from a team at Harvard) and written in Python, which means you can run a local copy instantly via uvx
like this:
uvx chainforge serve
You can then configure it with API keys to various providers (OpenAI worked for me, Anthropic models returned JSON parsing errors due to a 500 page from the ChainForge proxy) and start trying it out.
The "Add Node" menu shows the full list of capabilities.
The JavaScript and Python evaluation blocks are particularly interesting: the JavaScript one runs outside of a sandbox using plain eval()
, while the Python one still runs in your browser but uses Pyodide in a Web Worker.
Bringing developer choice to Copilot with Anthropic’s Claude 3.5 Sonnet, Google’s Gemini 1.5 Pro, and OpenAI’s o1-preview. The big announcement from GitHub Universe: Copilot is growing support for alternative models.
GitHub Copilot predated the release of ChatGPT by more than year, and was the first widely used LLM-powered tool. This announcement includes a brief history lesson:
The first public version of Copilot was launched using Codex, an early version of OpenAI GPT-3, specifically fine-tuned for coding tasks. Copilot Chat was launched in 2023 with GPT-3.5 and later GPT-4. Since then, we have updated the base model versions multiple times, using a range from GPT 3.5-turbo to GPT 4o and 4o-mini models for different latency and quality requirements.
It's increasingly clear that any strategy that ties you to models from exclusively one provider is short-sighted. The best available model for a task can change every few months, and for something like AI code assistance model quality matters a lot. Getting stuck with a model that's no longer best in class could be a serious competitive disadvantage.
The other big announcement from the keynote was GitHub Spark, described like this:
Sparks are fully functional micro apps that can integrate AI features and external data sources without requiring any management of cloud resources.
I got to play with this at the event. It's effectively a cross between Claude Artifacts and GitHub Gists, with some very neat UI details. The features that really differentiate it from Artifacts is that Spark apps gain access to a server-side key/value store which they can use to persist JSON - and they can also access an API against which they can execute their own prompts.
The prompt integration is particularly neat because prompts used by the Spark apps are extracted into a separate UI so users can view and modify them without having to dig into the (editable) React JavaScript code.
Prompt GPT-4o audio. A week and a half ago I built a tool for experimenting with OpenAI's new audio input. I just put together the other side of that, for experimenting with audio output.
Once you've provided an API key (which is saved in localStorage) you can use this to prompt the gpt-4o-audio-preview
model with a system and regular prompt and select a voice for the response.
I built it with assistance from Claude: initial app, adding system prompt support.
You can preview and download the resulting wav
file, and you can also copy out the raw JSON. If you save that in a Gist you can then feed its Gist ID to https://tools.simonwillison.net/gpt-4o-audio-player?gist=GIST_ID_HERE
(Claude transcript) to play it back again.
You can try using that to listen to my French accented pelican description.
There's something really interesting to me here about this form of application which exists entirely as HTML and JavaScript that uses CORS to talk to various APIs. GitHub's Gist API is accessible via CORS too, so it wouldn't take much more work to add a "save" button which writes out a new Gist after prompting for a personal access token. I prototyped that a bit here.
Notes on the new Claude analysis JavaScript code execution tool
Anthropic released a new feature for their Claude.ai consumer-facing chat bot interface today which they’re calling “the analysis tool”.
[... 918 words]Using Rust in non-Rust servers to improve performance (via) Deep dive into different strategies for optimizing part of a web server application - in this case written in Node.js, but the same strategies should work for Python as well - by integrating with Rust in different ways.
The example app renders QR codes, initially using the pure JavaScript qrcode package. That ran at 1,464 req/sec, but switching it to calling a tiny Rust CLI wrapper around the qrcode crate using Node.js spawn()
increased that to 2,572 req/sec.
This is yet another reminder to me that I need to get over my cgi-bin
era bias that says that shelling out to another process during a web request is a bad idea. It turns out modern computers can quite happily spawn and terminate 2,500+ processes a second!
The article optimizes further first through a Rust library compiled to WebAssembly (2,978 req/sec) and then through a Rust function exposed to Node.js as a native library (5,490 req/sec), then finishes with a full Rust rewrite of the server that replaces Node.js entirely, running at 7,212 req/sec.
Full source code to accompany the article is available in the using-rust-in-non-rust-servers repository.
Claude Artifact Runner (via) One of my least favourite things about Claude Artifacts (notes on how I use those here) is the way it defaults to writing code in React in a way that's difficult to reuse outside of Artifacts. I start most of my prompts with "no react" so that it will kick out regular HTML and JavaScript instead, which I can then copy out into my tools.simonwillison.net GitHub Pages repository.
It looks like Cláudio Silva has solved that problem. His claude-artifact-runner
repo provides a skeleton of a React app that reflects the Artifacts environment - including bundling libraries such as Shadcn UI, Tailwind CSS, Lucide icons and Recharts that are included in that environment by default.
This means you can clone the repo, run npm install && npm run dev
to start a development server, then copy and paste Artifacts directly from Claude into the src/artifact-component.tsx
file and have them rendered instantly.
I tried it just now and it worked perfectly. I prompted:
Build me a cool artifact using Shadcn UI and Recharts around the theme of a Pelican secret society trying to take over Half Moon Bay
Then copied and pasted the resulting code into that file and it rendered the exact same thing that Claude had shown me in its own environment.
I tried running npm run build
to create a built version of the application but I got some frustrating TypeScript errors - and I didn't want to make any edits to the code to fix them.
After poking around with the help of Claude I found this command which correctly built the application for me:
npx vite build
This created a dist/
directory containing an index.html
file and assets/index-CSlCNAVi.css
(46.22KB) and assets/index-f2XuS8JF.js
(542.15KB) files - a bit heavy for my liking but they did correctly run the application when hosted through a python -m http.server
localhost server.
Everything I built with Claude Artifacts this week
I’m a huge fan of Claude’s Artifacts feature, which lets you prompt Claude to create an interactive Single Page App (using HTML, CSS and JavaScript) and then view the result directly in the Claude interface, iterating on it further with the bot and then, if you like, copying out the resulting code.
[... 2,273 words]Dashboard: Tools. I used Django SQL Dashboard to spin up a dashboard that shows all of the URLs to my tools.simonwillison.net site that I've shared on my blog so far. It uses this (Claude assisted) regular expression in a PostgreSQL SQL query:
select distinct on (tool_url)
unnest(regexp_matches(
body,
'(https://tools\.simonwillison\.net/[^<"\s)]+)',
'g'
)) as tool_url,
'https://simonwillison.net/' || left(type, 1) || '/' || id as blog_url,
title,
date(created) as created
from content
I've been really enjoying having a static hosting platform (it's GitHub Pages serving my simonw/tools repo) that I can use to quickly deploy little HTML+JavaScript interactive tools and demos.
Announcing Deno 2. The big focus of Deno 2 is compatibility with the existing Node.js and npm ecosystem:
Deno 2 takes all of the features developers love about Deno 1.x — zero-config, all-in-one toolchain for JavaScript and TypeScript development, web standard API support, secure by default — and makes it fully backwards compatible with Node and npm (in ESM).
The npm support is documented here. You can write a script like this:
import * as emoji from "npm:node-emoji";
console.log(emoji.emojify(`:sauropod: :heart: npm`));
And when you run it Deno will automatically fetch and cache the required dependencies:
deno run main.js
Another new feature that caught my eye was this:
deno jupyter
now supports outputting images, graphs, and HTML
Deno has apparently shipped with a Jupyter notebook kernel for a while, and it's had a major upgrade in this release.
Here's Ryan Dahl's demo of the new notebook support in his Deno 2 release video.
I tried this out myself, and it's really neat. First you need to install the kernel:
deno juptyer --install
I was curious to find out what this actually did, so I dug around in the code and then further in the Rust runtimed dependency. It turns out installing Jupyter kernels, at least on macOS, involves creating a directory in ~/Library/Jupyter/kernels/deno
and writing a kernel.json
file containing the following:
{
"argv": [
"/opt/homebrew/bin/deno",
"jupyter",
"--kernel",
"--conn",
"{connection_file}"
],
"display_name": "Deno",
"language": "typescript"
}
That file is picked up by any Jupyter servers running on your machine, and tells them to run deno jupyter --kernel ...
to start a kernel.
I started Jupyter like this:
jupyter-notebook /tmp
Then started a new notebook, selected the Deno kernel and it worked as advertised:
import * as Plot from "npm:@observablehq/plot";
import { document, penguins } from "jsr:@ry/jupyter-helper";
let p = await penguins();
Plot.plot({
marks: [
Plot.dot(p.toRecords(), {
x: "culmen_depth_mm",
y: "culmen_length_mm",
fill: "species",
}),
],
document,
});
openai/openai-realtime-console. I got this OpenAI demo repository working today - it's an extremely easy way to get started playing around with the new Realtime voice API they announced at DevDay last week:
cd /tmp
git clone https://github.com/openai/openai-realtime-console
cd openai-realtime-console
npm i
npm start
That starts a localhost:3000
server running the demo React application. It asks for an API key, you paste one in and you can start talking to the web page.
The demo handles voice input, voice output and basic tool support - it has a tool that can show you the weather anywhere in the world, including panning a map to that location. I tried adding a show_map() tool so I could pan to a location just by saying "Show me a map of the capital of Morocco" - all it took was editing the src/pages/ConsolePage.tsx
file and hitting save, then refreshing the page in my browser to pick up the new function.
Be warned, it can be quite expensive to play around with. I was testing the application intermittently for only about 15 minutes and racked up $3.87 in API charges.
fav.farm (via) Neat little site by Wes Bos: it serves SVG (or PNG for Safari) favicons of every Emoji, which can be added to any site like this:
<link rel="icon" href="https://fav.farm/🔥" />
The source code is on GitHub. It runs on Deno and Deno Deploy, and recently added per-Emoji hit counters powered by the Deno KV store, implemented in db.ts using this pattern:
export function incrementCount(emoji: string) {
const VIEW_KEY = [`favicon`, `${emoji}`];
return db.atomic().sum(
VIEW_KEY, 1n
).commit(); // Increment KV by 1
}
SVG to JPG/PNG. The latest in my ongoing series of interactive HTML and JavaScript tools written almost entirely by LLMs. This one lets you paste in (or open-from-file, or drag-onto-page) some SVG and then use that to render a JPEG or PNG image of your desired width.
I built this using Claude 3.5 Sonnet, initially as an Artifact and later in a code editor since some of the features (loading an example image and downloading the result) cannot run in the sandboxed iframe Artifact environment.
Here's the full transcript of the Claude conversation I used to build the tool, plus a few commits I later made by hand to further customize it.
The code itself is mostly quite simple. The most interesting part is how it renders the SVG to an image, which (simplified) looks like this:
// First extract the viewbox to get width/height
const svgElement = new DOMParser().parseFromString(
svgInput, 'image/svg+xml'
).documentElement;
let viewBox = svgElement.getAttribute('viewBox');
[, , width, height] = viewBox.split(' ').map(Number);
// Figure out the width/height of the output image
const newWidth = parseInt(widthInput.value) || 800;
const aspectRatio = width / height;
const newHeight = Math.round(newWidth / aspectRatio);
// Create off-screen canvas
const canvas = document.createElement('canvas');
canvas.width = newWidth;
canvas.height = newHeight;
// Draw SVG on canvas
const svgBlob = new Blob([svgInput], {type: 'image/svg+xml;charset=utf-8'});
const svgUrl = URL.createObjectURL(svgBlob);
const img = new Image();
const ctx = canvas.getContext('2d');
img.onload = function() {
ctx.drawImage(img, 0, 0, newWidth, newHeight);
URL.revokeObjectURL(svgUrl);
// Convert that to a JPEG
const imageDataUrl = canvas.toDataURL("image/jpeg");
const convertedImg = document.createElement('img');
convertedImg.src = imageDataUrl;
imageContainer.appendChild(convertedImg);
};
img.src = svgUrl;
Here's the MDN explanation of that revokeObjectURL() method, which I hadn't seen before.
Call this method when you've finished using an object URL to let the browser know not to keep the reference to the file any longer.
Building an automatically updating live blog in Django. Here's an extended write-up of how I implemented the live blog feature I used for my coverage of OpenAI DevDay yesterday. I built the first version using Claude while waiting for the keynote to start, then upgraded it during the lunch break with the help of GPT-4o to add sort options and incremental fetching of new updates.
[Reddit is] mostly ported over entirely to Lit now. There are a few straggling pages that we're still working on, but most of what everyday typical users see and use is now entirely Lit based. This includes both logged out and logged in experiences.
— Jim Simon, Reddit
If you use a JavaScript framework you should:
- be able to justify with evidence, how using JavaScript would benefit users
- be aware of any negative impacts and be able to mitigate them
- consider whether the benefits of using it outweigh the potential problems
- only use the framework for parts of the user interface that cannot be built using HTML and CSS alone
- design each part of the user interface as a separate component
Having separate components means that if the JavaScript fails to load, it will only be that single component that fails. The rest of the page will load as normal.
SPAs incur complexity that simply doesn't exist with traditional server-based websites: issues such as search engine optimization, browser history management, web analytics and first page load time all need to be addressed. Proper analysis and consideration of the trade-offs is required to determine if that complexity is warranted for business or user experience reasons. Too often teams are skipping that trade-off analysis, blindly accepting the complexity of SPAs by default even when business needs don't justify it. We still see some developers who aren't aware of an alternative approach because they've spent their entire career in a framework like React.
— Thoughtworks, October 2022
The web’s clipboard, and how it stores data of different types.
Alex Harri's deep dive into the Web clipboard API, the more recent alternative to the old document.execCommand()
mechanism for accessing the clipboard.
There's a lot to understand here! Some of these APIs have a history dating back to Internet Explorer 4 in 1997, and there have been plenty of changes over the years to account for improved understanding of the security risks of allowing untrusted code to interact with the system clipboard.
Today, the most reliable data formats for interacting with the clipboard are the "standard" formats of text/plain
, text/html
and image/png
.
Figma does a particularly clever trick where they share custom Figma binary data structures by encoding them as base64 in data-metadata
and data-buffer
attributes on a <span>
element, then write the result to the clipboard as HTML. This enables copy-and-paste between the Figma web and native apps via the system clipboard.
Oracle, it’s time to free JavaScript. (via) Oracle have held the trademark on JavaScript since their acquisition of Sun Microsystems in 2009. They’ve continued to renew that trademark over the years despite having no major products that use the mark.
Their December 2019 renewal included a screenshot of the Node.js homepage as a supporting specimen!
Now a group lead by a team that includes Ryan Dahl and Brendan Eich is coordinating a legal challenge to have the USPTO treat the trademark as abandoned and “recognize it as a generic name for the world’s most popular programming language, which has multiple implementations across the industry.”
Notes on running Go in the browser with WebAssembly (via) Neat, concise tutorial by Eli Bendersky on compiling Go applications that can then be loaded into a browser using WebAssembly and integrated with JavaScript. Go functions can be exported to JavaScript like this:
js.Global().Set("calcHarmonic", jsCalcHarmonic)
And Go code can even access the DOM using a pattern like this:
doc := js.Global().Get("document")
inputElement := doc.Call("getElementById", "timeInput")
input := inputElement.Get("value")
Bundling the WASM Go runtime involves a 2.5MB file load, but there’s also a TinyGo alternative which reduces that size to a fourth.
Calling LLMs from client-side JavaScript, converting PDFs to HTML + weeknotes
I’ve been having a bunch of fun taking advantage of CORS-enabled LLM APIs to build client-side JavaScript applications that access LLMs directly. I also span up a new Datasette plugin for advanced permission management.
[... 2,050 words]whenever you do this:
el.innerHTML += HTML
you'd be better off with this:
el.insertAdjacentHTML("beforeend", html)
reason being, the latter doesn't trash and re-create/re-stringify what was previously already there
System prompt for val.town/townie (via) Val Town (previously) provides hosting and a web-based coding environment for Vals - snippets of JavaScript/TypeScript that can run server-side as scripts, on a schedule or hosting a web service.
Townie is Val's new AI bot, providing a conversational chat interface for creating fullstack web apps (with blob or SQLite persistence) as Vals.
In the most recent release of Townie Val added the ability to inspect and edit its system prompt!
I've archived a copy in this Gist, as a snapshot of how Townie works today. It's surprisingly short, relying heavily on the model's existing knowledge of Deno and TypeScript.
I enjoyed the use of "tastefully" in this bit:
Tastefully add a view source link back to the user's val if there's a natural spot for it and it fits in the context of what they're building. You can generate the val source url via import.meta.url.replace("esm.town", "val.town").
The prompt includes a few code samples, like this one demonstrating how to use Val's SQLite package:
import { sqlite } from "https://esm.town/v/stevekrouse/sqlite";
let KEY = new URL(import.meta.url).pathname.split("/").at(-1);
(await sqlite.execute(`select * from ${KEY}_users where id = ?`, [1])).rows[0].id
It also reveals the existence of Val's very own delightfully simple image generation endpoint Val, currently powered by Stable Diffusion XL Lightning on fal.ai.
If you want an AI generated image, use https://maxm-imggenurl.web.val.run/the-description-of-your-image to dynamically generate one.
Here's a fun colorful raccoon with a wildly inappropriate hat.
Val are also running their own gpt-4o-mini proxy, free to users of their platform:
import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
messages: [
{ role: "user", content: "Say hello in a creative way" },
],
model: "gpt-4o-mini",
max_tokens: 30,
});
Val developer JP Posma wrote a lot more about Townie in How we built Townie – an app that generates fullstack apps, describing their prototyping process and revealing that the current model it's using is Claude 3.5 Sonnet.
Their current system prompt was refined over many different versions - initially they were including 50 example Vals at quite a high token cost, but they were able to reduce that down to the linked system prompt which includes condensed documentation and just one templated example.
Gemini Chat App. Google released three new Gemini models today: improved versions of Gemini 1.5 Pro and Gemini 1.5 Flash plus a new model, Gemini 1.5 Flash-8B, which is significantly faster (and will presumably be cheaper) than the regular Flash model.
The Flash-8B model is described in the Gemini 1.5 family of models paper in section 8:
By inheriting the same core architecture, optimizations, and data mixture refinements as its larger counterpart, Flash-8B demonstrates multimodal capabilities with support for context window exceeding 1 million tokens. This unique combination of speed, quality, and capabilities represents a step function leap in the domain of single-digit billion parameter models.
While Flash-8B’s smaller form factor necessarily leads to a reduction in quality compared to Flash and 1.5 Pro, it unlocks substantial benefits, particularly in terms of high throughput and extremely low latency. This translates to affordable and timely large-scale multimodal deployments, facilitating novel use cases previously deemed infeasible due to resource constraints.
The new models are available in AI Studio, but since I built my own custom prompting tool against the Gemini CORS-enabled API the other day I figured I'd build a quick UI for these new models as well.
Building this with Claude 3.5 Sonnet took literally ten minutes from start to finish - you can see that from the timestamps in the conversation. Here's the deployed app and the finished code.
The feature I really wanted to build was streaming support. I started with this example code showing how to run streaming prompts in a Node.js application, then told Claude to figure out what the client-side code for that should look like based on a snippet from my bounding box interface hack. My starting prompt:
Build me a JavaScript app (no react) that I can use to chat with the Gemini model, using the above strategy for API key usage
I still keep hearing from people who are skeptical that AI-assisted programming like this has any value. It's honestly getting a little frustrating at this point - the gains for things like rapid prototyping are so self-evident now.
Claude’s API now supports CORS requests, enabling client-side applications
Anthropic have enabled CORS support for their JSON APIs, which means it’s now possible to call the Claude LLMs directly from a user’s browser.
[... 625 words]Reckoning. Alex Russell is a self-confessed Cassandra - doomed to speak truth that the wider Web industry stubbornly ignores. With this latest series of posts he is spitting fire.
The series is an "investigation into JavaScript-first frontend culture and how it broke US public services", in four parts.
In Part 2 — Object Lesson Alex profiles BenefitsCal, the California state portal for accessing SNAP food benefits (aka "food stamps"). On a 9Mbps connection, as can be expected in rural parts of California with populations most likely to need these services, the site takes 29.5 seconds to become usefully interactive, fetching more than 20MB of JavaScript (which isn't even correctly compressed) for a giant SPA that incoroprates React, Vue, the AWS JavaScript SDK, six user-agent parsing libraries and a whole lot more.
It doesn't have to be like this! GetCalFresh.org, the Code for America alternative to BenefitsCal, becomes interactive after 4 seconds. Despite not being the "official" site it has driven nearly half of all signups for California benefits.
The fundamental problem here is the Web industry's obsession with SPAs and JavaScript-first development - techniques that make sense for a tiny fraction of applications (Alex calls out document editors, chat and videoconferencing and maps, geospatial, and BI visualisations as apppropriate applications) but massively increase the cost and complexity for the vast majority of sites - especially sites primarily used on mobile and that shouldn't expect lengthy session times or multiple repeat visits.
There's so much great, quotable content in here. Don't miss out on the footnotes, like this one:
The JavaScript community's omertà regarding the consistent failure of frontend frameworks to deliver reasonable results at acceptable cost is likely to be remembered as one of the most shameful aspects of frontend's lost decade.
Had the risks been prominently signposted, dozens of teams I've worked with personally could have avoided months of painful remediation, and hundreds more sites I've traced could have avoided material revenue losses.
Too many engineering leaders have found their teams beached and unproductive for no reason other than the JavaScript community's dedication to a marketing-over-results ethos of toxic positivity.
In Part 4 — The Way Out Alex recommends the gov.uk Service Manual as a guide for building civic Web services that avoid these traps, thanks to the policy described in their Building a resilient frontend using progressive enhancement document.
PEP 750 – Tag Strings For Writing Domain-Specific Languages. A new PEP by Jim Baker, Guido van Rossum and Paul Everitt that proposes introducing a feature to Python inspired by JavaScript's tagged template literals.
F strings in Python already use a f"f prefix"
, this proposes allowing any Python symbol in the current scope to be used as a string prefix as well.
I'm excited about this. Imagine being able to compose SQL queries like this:
query = sql"select * from articles where id = {id}"
Where the sql
tag ensures that the {id}
value there is correctly quoted and escaped.
Currently under active discussion on the official Python discussion forum.
Observable Plot: Waffle mark (via) New feature in Observable Plot 0.6.16: the waffle mark! I really like this one. Here's an example showing the gender and weight of athletes in this year's Olympics:
What we got wrong about HTTP imports (via) HTTP imports are one of the most interesting design features of Deno:
import { assertEquals } from "https://deno.land/std@0.224.0/assert/mod.ts";
Six years after their introduction, Ryan Dahl reviews their disadvantages:
- Lengthy (non-memorable) URLs littering the codebase
- A slightly cumbersome
import { concat } from "../../deps.ts";
pattern for managing dependencies in one place - Large projects can end up using multiple slightly different versions of the same dependencies
- If a website becomes unavailable, new builds will fail (existing builds will continue to use their cached version)
Deno 2 - due in September - will continue to support them, but will lean much more on the combination of import maps (design borrowed from modern browsers) and the Deno project's JSR npm competitor. An import map like this:
{
"imports": {
"@std/assert": "jsr:@std/assert@1"
}
}
Will then enable import statements that look like this:
import { assertEquals } from "@std/assert";
Button Stealer (via) Really fun Chrome extension by Anatoly Zenkov: it scans every web page you visit for things that look like buttons and stashes a copy of them, then provides a page where you can see all of the buttons you have collected. Here's Anatoly's collection, and here are a few that I've picked up trying it out myself:
The extension source code is on GitHub. It identifies potential buttons by looping through every <a>
and <button>
element and applying some heuristics like checking the width/height ratio, then clones a subset of the CSS from window.getComputedStyle()
and stores that in the style=
attribute.