Simon Willison’s Weblog

Subscribe
Atom feed for edge-llms

62 items tagged “edge-llms”

LLMs that can run on consumer hardware like laptops or mobile phones.

2024

Ollama: Llama 3.2 Vision. Ollama released version 0.4 last week with support for Meta's first Llama vision model, Llama 3.2.

If you have Ollama installed you can fetch the 11B model (7.9 GB) like this:

ollama pull llama3.2-vision

Or the larger 90B model (55GB download, likely needs ~88GB of RAM) like this:

ollama pull llama3.2-vision:90b

I was delighted to learn that Sukhbinder Singh had already contributed support for LLM attachments to Sergey Alexandrov's llm-ollama plugin, which means the following works once you've pulled the models:

llm install --upgrade llm-ollama
llm -m llama3.2-vision:latest 'describe' \
  -a https://static.simonwillison.net/static/2024/pelican.jpg

This image features a brown pelican standing on rocks, facing the camera and positioned to the left of center. The bird's long beak is a light brown color with a darker tip, while its white neck is adorned with gray feathers that continue down to its body. Its legs are also gray.

In the background, out-of-focus boats and water are visible, providing context for the pelican's environment.

That's not a bad description of this image, especially for a 7.9GB model that runs happily on my MacBook Pro.

# 13th November 2024, 1:55 am / vision-llms, llm, llama, ai, edge-llms, llms, meta, ollama, generative-ai

Qwen2.5-Coder-32B is an LLM that can code well that runs on my Mac

Visit Qwen2.5-Coder-32B is an LLM that can code well that runs on my Mac

There’s a whole lot of buzz around the new Qwen2.5-Coder Series of open source (Apache 2.0 licensed) LLM releases from Alibaba’s Qwen research team. On first impression it looks like the buzz is well deserved.

[... 697 words]

Everything I’ve learned so far about running local LLMs (via) Chris Wellons shares detailed notes on his experience running local LLMs on Windows - though most of these tips apply to other operating systems as well.

This is great, there's a ton of detail here and the root recommendations are very solid: Use llama-server from llama.cpp and try ~8B models first (Chris likes Llama 3.1 8B Instruct at Q4_K_M as a first model), anything over 10B probably won't run well on a CPU so you'll need to consider your available GPU VRAM.

This is neat:

Just for fun, I ported llama.cpp to Windows XP and ran a 360M model on a 2008-era laptop. It was magical to load that old laptop with technology that, at the time it was new, would have been worth billions of dollars.

I need to spend more time with Chris's favourite models, Mistral-Nemo-2407 (12B) and Qwen2.5-14B/72B.

Chris also built illume, a Go CLI tool for interacting with models that looks similar to my own LLM project.

# 10th November 2024, 6:01 pm / windows, generative-ai, go, ai, edge-llms, llms

Nous Hermes 3. The Nous Hermes family of fine-tuned models have a solid reputation. Their most recent release came out in August, based on Meta's Llama 3.1:

Our training data aggressively encourages the model to follow the system and instruction prompts exactly and in an adaptive manner. Hermes 3 was created by fine-tuning Llama 3.1 8B, 70B and 405B, and training on a dataset of primarily synthetically generated responses. The model boasts comparable and superior performance to Llama 3.1 while unlocking deeper capabilities in reasoning and creativity.

The model weights are on Hugging Face, including GGUF versions of the 70B and 8B models. Here's how to try the 8B model (a 4.58GB download) using the llm-gguf plugin:

llm install llm-gguf
llm gguf download-model 'https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B-GGUF/resolve/main/Hermes-3-Llama-3.1-8B.Q4_K_M.gguf' -a Hermes-3-Llama-3.1-8B
llm -m Hermes-3-Llama-3.1-8B 'hello in spanish'

Nous Research partnered with Lambda Labs to provide inference APIs. It turns out Lambda host quite a few models now, currently providing free inference to users with an API key.

I just released the first alpha of a llm-lambda-labs plugin. You can use that to try the larger 405b model (very hard to run on a consumer device) like this:

llm install llm-lambda-labs
llm keys set lambdalabs
# Paste key here
llm -m lambdalabs/hermes3-405b 'short poem about a pelican with a twist'

Here's the source code for the new plugin, which I based on llm-mistral. The plugin uses httpx-sse to consume the stream of tokens from the API.

# 4th November 2024, 6:20 pm / llm, generative-ai, llama, ai, edge-llms, llms, meta, projects, nous-research

SmolLM2 (via) New from Loubna Ben Allal and her research team at Hugging Face:

SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. [...]

It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon.

The model weights are released under an Apache 2 license. I've been trying these out using my llm-gguf plugin for LLM and my first impressions are really positive.

Here's a recipe to run a 1.7GB Q8 quantized model from lmstudio-community:

llm install llm-gguf
llm gguf download-model https://huggingface.co/lmstudio-community/SmolLM2-1.7B-Instruct-GGUF/resolve/main/SmolLM2-1.7B-Instruct-Q8_0.gguf -a smol17
llm chat -m smol17

Animated terminal demo. My prompt is tell me about pelicans. The model responds: Sure, I'd be happy to tell you about pelicans! Pelicans are a group of aquatic birds in the order Pelecaniformes, which also includes the cormorants, darters, and frigatebirds. They are found on all continents except Antarctica, and are known for their distinctive pouch-like bill. There are several species of pelicans. The most common species is the Brown Pelican, which is found in the Americas. It's the only species that plunges into water from a significant height to catch fish and other prey, a behavior known as "fish-grabbing."  Another common species is the American White Pelican, which can be found in both the Americas and Eurasia. It has a white plumage and a large, bright pink bill, and feeds on fish in lakes, rivers, and coastal wetlands.  Pelicans are generally medium-sized birds, but the Brown Pelican is the largest, with an average height of around 26-30 inches. Their bills can be as long as 11 inches!  Below the terminal you can see Activity Monitor showing 378% CPU usage for the Python process

Or at the other end of the scale, here's how to run the 138MB Q8 quantized 135M model:

llm gguf download-model https://huggingface.co/lmstudio-community/SmolLM2-135M-Instruct-GGUF/resolve/main/SmolLM2-135M-Instruct-Q8_0.gguf' -a smol135m
llm chat -m smol135m

The blog entry to accompany SmolLM2 should be coming soon, but in the meantime here's the entry from July introducing the first version: SmolLM - blazingly fast and remarkably powerful .

# 2nd November 2024, 5:27 am / llm, hugging-face, generative-ai, ai, llms, open-source, edge-llms

Running Llama 3.2 Vision and Phi-3.5 Vision on a Mac with mistral.rs

Visit Running Llama 3.2 Vision and Phi-3.5 Vision on a Mac with mistral.rs

mistral.rs is an LLM inference library written in Rust by Eric Buehler. Today I figured out how to use it to run the Llama 3.2 Vision and Phi-3.5 Vision models on my Mac.

[... 1,231 words]

Llama 3.2. In further evidence that AI labs are terrible at naming things, Llama 3.2 is a huge upgrade to the Llama 3 series - they've released their first multi-modal vision models!

Today, we’re releasing Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B), and lightweight, text-only models (1B and 3B) that fit onto edge and mobile devices, including pre-trained and instruction-tuned versions.

The 1B and 3B text-only models are exciting too, with a 128,000 token context length and optimized for edge devices (Qualcomm and MediaTek hardware get called out specifically).

Meta partnered directly with Ollama to help with distribution, here's the Ollama blog post. They only support the two smaller text-only models at the moment - this command will get the 3B model (2GB):

ollama run llama3.2

And for the 1B model (a 1.3GB download):

ollama run llama3.2:1b

I had to first upgrade my Ollama by clicking on the icon in my macOS task tray and selecting "Restart to update".

The two vision models are coming to Ollama "very soon".

Once you have fetched the Ollama model you can access it from my LLM command-line tool like this:

pipx install llm
llm install llm-ollama
llm chat -m llama3.2:1b

I tried running my djp codebase through that tiny 1B model just now and got a surprisingly good result - by no means comprehensive, but way better than I would ever expect from a model of that size:

files-to-prompt **/*.py -c | llm -m llama3.2:1b --system 'describe this code'

Here's a portion of the output:

The first section defines several test functions using the @djp.hookimpl decorator from the djp library. These hook implementations allow you to intercept and manipulate Django's behavior.

  • test_middleware_order: This function checks that the middleware order is correct by comparing the MIDDLEWARE setting with a predefined list.
  • test_middleware: This function tests various aspects of middleware:
  • It retrieves the response from the URL /from-plugin/ using the Client object, which simulates a request to this view.
  • It checks that certain values are present in the response:
    • X-DJP-Middleware-After
    • X-DJP-Middleware
    • X-DJP-Middleware-Before [...]

I found the GGUF file that had been downloaded by Ollama in my ~/.ollama/models/blobs directory. The following command let me run that model directly in LLM using the llm-gguf plugin:

llm install llm-gguf
llm gguf register-model ~/.ollama/models/blobs/sha256-74701a8c35f6c8d9a4b91f3f3497643001d63e0c7a84e085bed452548fa88d45 -a llama321b
llm chat -m llama321b

Meta themselves claim impressive performance against other existing models:

Our evaluation suggests that the Llama 3.2 vision models are competitive with leading foundation models, Claude 3 Haiku and GPT4o-mini on image recognition and a range of visual understanding tasks. The 3B model outperforms the Gemma 2 2.6B and Phi 3.5-mini models on tasks such as following instructions, summarization, prompt rewriting, and tool-use, while the 1B is competitive with Gemma.

Here's the Llama 3.2 collection on Hugging Face. You need to accept the new Llama 3.2 Community License Agreement there in order to download those models.

You can try the four new models out via the Chatbot Arena - navigate to "Direct Chat" there and select them from the dropdown menu. You can upload images directly to the chat there to try out the vision features.

llama-3.2-vision-90b-instruct  A photo of two capybaras  Prompt: Describe this photo in detail  The image depicts two capybaras standing in a body of water, with one positioned on the edge of a metal grate. The capybara on the right is partially submerged in the water, while the other is standing on the grate.  Key Features:      Capybaras: Two capybaras are visible in the image.     Water: The capybaras are standing in a body of water, which appears to be murky or dirty.     Metal Grate: A metal grate is visible at the bottom right of the image, with one capybara standing on it.     Background: The background of the image is not clearly visible due to the presence of the water and the capybaras.

# 25th September 2024, 8:28 pm / meta, vision-llms, generative-ai, llama, ai, llms, ollama, edge-llms

Mistral Large 2 (via) The second release of a GPT-4 class open weights model in two days, after yesterday's Llama 3.1 405B.

The weights for this one are under Mistral's Research License, which "allows usage and modification for research and non-commercial usages" - so not as open as Llama 3.1. You can use it commercially via the Mistral paid API.

Mistral Large 2 is 123 billion parameters, "designed for single-node inference" (on a very expensive single-node!) and has a 128,000 token context window, the same size as Llama 3.1.

Notably, according to Mistral's own benchmarks it out-performs the much larger Llama 3.1 405B on their code and math benchmarks. They trained on a lot of code:

Following our experience with Codestral 22B and Codestral Mamba, we trained Mistral Large 2 on a very large proportion of code. Mistral Large 2 vastly outperforms the previous Mistral Large, and performs on par with leading models such as GPT-4o, Claude 3 Opus, and Llama 3 405B.

They also invested effort in tool usage, multilingual support (across English, French, German, Spanish, Italian, Portuguese, Dutch, Russian, Chinese, Japanese, Korean, Arabic, and Hindi) and reducing hallucinations:

One of the key focus areas during training was to minimize the model’s tendency to “hallucinate” or generate plausible-sounding but factually incorrect or irrelevant information. This was achieved by fine-tuning the model to be more cautious and discerning in its responses, ensuring that it provides reliable and accurate outputs.

Additionally, the new Mistral Large 2 is trained to acknowledge when it cannot find solutions or does not have sufficient information to provide a confident answer.

I went to update my llm-mistral plugin for LLM to support the new model and found that I didn't need to - that plugin already uses llm -m mistral-large to access the mistral-large-latest endpoint, and Mistral have updated that to point to the latest version of their Large model.

Ollama now have mistral-large quantized to 4 bit as a 69GB download.

# 24th July 2024, 3:56 pm / mistral, llms, ai, generative-ai, ollama, edge-llms

gemma-2-27b-it-llamafile (via) Justine Tunney shipped llamafile packages of Google's new openly licensed (though definitely not open source) Gemma 2 27b model this morning.

I downloaded the gemma-2-27b-it.Q5_1.llamafile version (20.5GB) to my Mac, ran chmod 755 gemma-2-27b-it.Q5_1.llamafile and then ./gemma-2-27b-it.Q5_1.llamafile and now I'm trying it out through the llama.cpp default web UI in my browser. It works great.

It's a very capable model - currently sitting at position 12 on the LMSYS Arena making it the highest ranked open weights model - one position ahead of Llama-3-70b-Instruct and within striking distance of the GPT-4 class models.

# 2nd July 2024, 10:38 pm / llamafile, google, generative-ai, ai, edge-llms, llms, justine-tunney

Ultravox (via) Ultravox is "a multimodal Speech LLM built around a pretrained Whisper and Llama 3 backbone". It's effectively an openly licensed version of half of the GPT-4o model OpenAI demoed (but did not fully release) a few weeks ago: Ultravox is multimodal for audio input, but still relies on a separate text-to-speech engine for audio output.

You can try it out directly in your browser through this page on AI.TOWN - hit the "Call" button to start an in-browser voice conversation with the model.

I found the demo extremely impressive - really low latency and it was fun and engaging to talk to. Try saying "pretend to be a wise and sarcastic old fox" to kick it into a different personality.

The GitHub repo includes code for both training and inference, and the full model is available from Hugging Face - about 30GB of .safetensors files.

Ultravox says it's licensed under MIT, but I would expect it to also have to inherit aspects of the Llama 3 license since it uses that as a base model.

# 10th June 2024, 5:34 am / generative-ai, llama, text-to-speech, ai, edge-llms, llms

PaliGemma model README (via) One of the more over-looked announcements from Google I/O yesterday was PaliGemma, an openly licensed VLM (Vision Language Model) in the Gemma family of models.

The model accepts an image and a text prompt. It outputs text, but that text can include special tokens representing regions on the image. This means it can return both bounding boxes and fuzzier segment outlines of detected objects, behavior that can be triggered using a prompt such as "segment puffins".

You can try it out on Hugging Face.

It's a 3B model, making it feasible to run on consumer hardware.

# 15th May 2024, 9:16 pm / google, generative-ai, google-io, ai, edge-llms, llms

experimental-phi3-webgpu (via) Run Microsoft’s excellent Phi-3 model directly in your browser, using WebGPU so didn’t work in Firefox for me, just in Chrome.

It fetches around 2.1GB of data into the browser cache on first run, but then gave me decent quality responses to my prompts running at an impressive 21 tokens a second (M2, 64GB).

I think Phi-3 is the highest quality model of this size, so it’s a really good fit for running in a browser like this.

# 9th May 2024, 10:21 pm / browsers, webassembly, generative-ai, ai, edge-llms, llms, phi, webgpu

microsoft/Phi-3-mini-4k-instruct-gguf (via) Microsoft’s Phi-3 LLM is out and it’s really impressive. This 4,000 token context GGUF model is just a 2.2GB (for the Q4 version) and ran on my Mac using the llamafile option described in the README. I could then run prompts through it using the llm-llamafile plugin.

The vibes are good! Initial test prompts I’ve tried feel similar to much larger 7B models, despite using just a few GBs of RAM. Tokens are returned fast too—it feels like the fastest model I’ve tried yet.

And it’s MIT licensed.

# 23rd April 2024, 5:40 pm / llms, llm, generative-ai, ai, edge-llms, microsoft, phi

We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone.

Phi-3 Technical Report

# 23rd April 2024, 3 am / microsoft, ai, generative-ai, edge-llms, llms

Options for accessing Llama 3 from the terminal using LLM

Visit Options for accessing Llama 3 from the terminal using LLM

Llama 3 was released on Thursday. Early indications are that it’s now the best available openly licensed model—Llama 3 70b Instruct has taken joint 5th place on the LMSYS arena leaderboard, behind only Claude 3 Opus and some GPT-4s and sharing 5th place with Gemini Pro and Claude 3 Sonnet. But unlike those other models Llama 3 70b is weights available and can even be run on a (high end) laptop!

[... 1,962 words]

llm-gpt4all. New release of my LLM plugin which builds on Nomic's excellent gpt4all Python library. I've upgraded to their latest version which adds support for Llama 3 8B Instruct, so after a 4.4GB model download this works:

llm -m Meta-Llama-3-8B-Instruct "say hi in Spanish"

# 20th April 2024, 5:58 pm / nomic, llm, plugins, projects, generative-ai, ai, llms, llama, edge-llms

Mistral tweet a magnet link for mixtral-8x22b. Another open model release from Mistral using their now standard operating procedure of tweeting out a raw torrent link.

This one is an 8x22B Mixture of Experts model. Their previous most powerful openly licensed release was Mixtral 8x7B, so this one is a whole lot bigger (a 281GB download)—and apparently has a 65,536 context length, at least according to initial rumors on Twitter.

# 10th April 2024, 2:31 am / mistral, generative-ai, ai, edge-llms, llms

Gemma: Introducing new state-of-the-art open models. Google get in on the openly licensed LLM game: Gemma comes in two sizes, 2B and 7B, trained on 2 trillion and 6 trillion tokens respectively. The terms of use “permit responsible commercial usage”. In the benchmarks it appears to compare favorably to Mistral and Llama 2.

Something that caught my eye in the terms: “Google may update Gemma from time to time, and you must make reasonable efforts to use the latest version of Gemma.”

One of the biggest benefits of running your own model is that it can protect you from model updates that break your carefully tested prompts, so I’m not thrilled by that particular clause.

UPDATE: It turns out that clause isn’t uncommon—the phrase “You shall undertake reasonable efforts to use the latest version of the Model” is present in both the Stable Diffusion and BigScience Open RAIL-M licenses.

# 21st February 2024, 4:22 pm / google, generative-ai, ai, edge-llms, llms

2023

The AI trust crisis

Visit The AI trust crisis

Dropbox added some new AI features. In the past couple of days these have attracted a firestorm of criticism. Benj Edwards rounds it up in Dropbox spooks users with new AI features that send data to OpenAI when used.

[... 1,733 words]

Build an image search engine with llm-clip, chat with models with llm chat

Visit Build an image search engine with llm-clip, chat with models with llm chat

LLM is my combination CLI tool and Python library for working with Large Language Models. I just released LLM 0.10 with two significant new features: embedding support for binary files and the llm chat command.

[... 1,188 words]

Running my own LLM (via) Nelson Minar describes running LLMs on his own computer using my LLM tool and llm-gpt4all plugin, plus some notes on trying out some of the other plugins.

# 16th August 2023, 10:42 pm / llm, nelsonminar, edge-llms, llms

Run Llama 2 on your own Mac using LLM and Homebrew

Llama 2 is the latest commercially usable openly licensed Large Language Model, released by Meta AI a few weeks ago. I just released a new plugin for my LLM utility that adds support for Llama 2 and many other llama-cpp compatible models.

[... 1,423 words]

Llama 2: The New Open LLM SOTA. I’m in this Latent Space podcast, recorded yesterday, talking about the Llama 2 release.

# 19th July 2023, 5:37 pm / generative-ai, llama, ai, edge-llms, podcasts

llama2-mac-gpu.sh (via) Adrien Brault provided this recipe for compiling llama.cpp on macOS with GPU support enabled (“LLAMA_METAL=1 make”) and then downloading and running a GGML build of Llama 2 13B.

# 19th July 2023, 4:04 am / macosx, generative-ai, llama, ai, edge-llms, llms

Ollama (via) This tool for running LLMs on your own laptop directly includes an installer for macOS (Apple Silicon) and provides a terminal chat interface for interacting with models. They already have Llama 2 support working, with a model that downloads directly from their own registry service without need to register for an account or work your way through a waiting list.

# 18th July 2023, 9 pm / generative-ai, llama, ai, edge-llms, llms, ollama

Accessing Llama 2 from the command-line with the llm-replicate plugin

Visit Accessing Llama 2 from the command-line with the llm-replicate plugin

The big news today is Llama 2, the new openly licensed Large Language Model from Meta AI. It’s a really big deal:

[... 1,206 words]

Weeknotes: Self-hosted language models with LLM plugins, a new Datasette tutorial, a dozen package releases, a dozen TILs

A lot of stuff to cover from the past two and a half weeks.

[... 1,742 words]

My LLM CLI tool now supports self-hosted language models via plugins

Visit My LLM CLI tool now supports self-hosted language models via plugins

LLM is my command-line utility and Python library for working with large language models such as GPT-4. I just released version 0.5 with a huge new feature: you can now install plugins that add support for additional models to the tool, including models that can run on your own hardware.

[... 1,656 words]

Databricks Signs Definitive Agreement to Acquire MosaicML, a Leading Generative AI Platform. MosaicML are the team behind MPT-7B and MPT-30B, two of the most impressive openly licensed LLMs. They just got acquired by Databricks for $1.3 billion dollars.

# 30th June 2023, 1:43 am / open-source, generative-ai, ai, edge-llms, llms

abacaj/mpt-30B-inference. MPT-30B, released last week, is an extremely capable Apache 2 licensed open source language model. This repo shows how it can be run on a CPU, using the ctransformers Python library based on GGML. Following the instructions in the README got me a working MPT-30B model on my M2 MacBook Pro. The model is a 19GB download and it takes a few seconds to start spitting out tokens, but it works as advertised.

# 29th June 2023, 3:27 am / llms, ai, edge-llms, generative-ai, open-source