66 items tagged “llama”
2023
I apologize, but I cannot provide an explanation for why the Montagues and Capulets are beefing in Romeo and Juliet as it goes against ethical and moral standards, and promotes negative stereotypes and discrimination.
llama.cpp surprised many people (myself included) with how quickly you can run large LLMs on small computers [...] TLDR at batch_size=1 (i.e. just generating a single stream of prediction on your computer), the inference is super duper memory-bound. The on-chip compute units are twiddling their thumbs while sucking model weights through a straw from DRAM. [...] A100: 1935 GB/s memory bandwidth, 1248 TOPS. MacBook M2: 100 GB/s, 7 TFLOPS. The compute is ~200X but the memory bandwidth only ~20X. So the little M2 chip that could will only be about ~20X slower than a mighty A100.
Llama from scratch (or how to implement a paper without crying) (via) Brian Kitano implemented the model described in the Llama paper against TinyShakespeare, from scratch, using Python and PyTorch. This write-up is fantastic—meticulous, detailed and deeply informative. It would take several hours to fully absorb and follow everything Brian does here but it would provide multiple valuable lessons in understanding how all of this stuff fits together.
Run Llama 2 on your own Mac using LLM and Homebrew
Llama 2 is the latest commercially usable openly licensed Large Language Model, released by Meta AI a few weeks ago. I just released a new plugin for my LLM utility that adds support for Llama 2 and many other llama-cpp compatible models.
[... 1,423 words]Llama 2: The New Open LLM SOTA. I’m in this Latent Space podcast, recorded yesterday, talking about the Llama 2 release.
llama2-mac-gpu.sh (via) Adrien Brault provided this recipe for compiling llama.cpp on macOS with GPU support enabled (“LLAMA_METAL=1 make”) and then downloading and running a GGML build of Llama 2 13B.
Ollama (via) This tool for running LLMs on your own laptop directly includes an installer for macOS (Apple Silicon) and provides a terminal chat interface for interacting with models. They already have Llama 2 support working, with a model that downloads directly from their own registry service without need to register for an account or work your way through a waiting list.
Accessing Llama 2 from the command-line with the llm-replicate plugin
The big news today is Llama 2, the new openly licensed Large Language Model from Meta AI. It’s a really big deal:
[... 1,206 words]Llama encoder and decoder. I forked my GPT tokenizer Observable notebook to create a similar tool for exploring the tokenization scheme used by the Llama family of LLMs, using the new llama-tokenizer-js JavaScript library.
OpenLLaMA. The first openly licensed model I’ve seen trained on the RedPajama dataset. This initial release is a 7B model trained on 200 billion tokens, but the team behind it are promising a full 1 trillion token model in the near future. I haven’t found a live demo of this one running anywhere yet.
Let’s be bear or bunny
The Machine Learning Compilation group (MLC) are my favourite team of AI researchers at the moment.
[... 599 words]MLC LLM (via) From MLC, the team that gave us Web LLM and Web Stable Diffusion. “MLC LLM is a universal solution that allows any language model to be deployed natively on a diverse set of hardware backends and native applications”. I installed their iPhone demo from TestFlight this morning and it does indeed provide an offline LLM that runs on my phone. It’s reasonably capable—the underlying model for the app is vicuna-v1-7b, a LLaMA derivative.
LLaVA: Large Language and Vision Assistant (via) Yet another multi-modal model combining a vision model (pre-trained CLIP ViT-L/14) and a LLaMA derivative model (Vicuna). The results I get from their demo are even more impressive than MiniGPT-4. Also includes a new training dataset, LLaVA-Instruct-150K, derived from GPT-4 and subject to the same warnings about the OpenAI terms of service.
What’s in the RedPajama-Data-1T LLM training set
RedPajama is “a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens”. It’s a collaboration between Together, Ontocord.ai, ETH DS3Lab, Stanford CRFM, Hazy Research, and MILA Québec AI Institute.
[... 1,077 words]RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. With the amount of projects that have used LLaMA as a foundation model since its release two months ago—despite its non-commercial license—it’s clear that there is a strong desire for a fully openly licensed alternative.
RedPajama is a collaboration between Together, Ontocord.ai, ETH DS3Lab, Stanford CRFM, Hazy Research, and MILA Québec AI Institute aiming to build exactly that.
Step one is gathering the training data: the LLaMA paper described a 1.2 trillion token training set gathered from sources that included Wikipedia, Common Crawl, GitHub, arXiv, Stack Exchange and more.
RedPajama-Data-1T is an attempt at recreating that training set. It’s now available to download, as 2,084 separate multi-GB jsonl files—2.67TB total.
Even without a trained model, this is a hugely influential contribution to the world of open source LLMs. Any team looking to build their own LLaMA from scratch can now jump straight to the next stage, training the model.
Web LLM runs the vicuna-7b Large Language Model entirely in your browser, and it’s very impressive
A month ago I asked Could you train a ChatGPT-beating model for $85,000 and run it in a browser?. $85,000 was a hypothetical training cost for LLaMA 7B plus Stanford Alpaca. “Run it in a browser” was based on the fact that Web Stable Diffusion runs a 1.9GB Stable Diffusion model in a browser, so maybe it’s not such a big leap to run a small Large Language Model there as well.
[... 2,276 words]Replacing my best friends with an LLM trained on 500,000 group chat messages (via) Izzy Miller used a 7 year long group text conversation with five friends from college to fine-tune LLaMA, such that it could simulate ongoing conversations. They started by extracting the messages from the iMessage SQLite database on their Mac, then generated a new training set from those messages and ran it using code from the Stanford Alpaca repository. This is genuinely one of the clearest explanations of the process of fine-tuning a model like this I’ve seen anywhere.
Thoughts on AI safety in this era of increasingly powerful open source LLMs
This morning, VentureBeat published a story by Sharon Goldman: With a wave of new LLMs, open source AI is having a moment — and a red-hot debate. It covers the explosion in activity around openly available Large Language Models such as LLaMA—a trend I’ve been tracking in my own series LLMs on personal devices—and talks about their implications with respect to AI safety.
[... 782 words]The Changelog podcast: LLMs break the internet
I’m the guest on the latest episode of The Changelog podcast: LLMs break the internet. It’s a follow-up to the episode we recorded six months ago about Stable Diffusion.
[... 454 words]Downloading and converting the original models (Cerebras-GPT) (via) Georgi Gerganov added support for the Apache 2 licensed Cerebras-GPT language model to his ggml C++ inference library, as used by llama.cpp.
gpt4all. Similar to Alpaca, here’s a project which takes the LLaMA base model and fine-tunes it on instruction examples generated by GPT-3—in this case, it’s 800,000 examples generated using the ChatGPT GPT 3.5 turbo model (Alpaca used 52,000 generated by regular GPT-3). This is currently the easiest way to get a LLaMA derived chatbot running on your own computer: the repo includes compiled binaries for running on M1/M2, Intel Mac, Windows and Linux and provides a link to download the 3.9GB 4-bit quantized model.
Announcing Open Flamingo (via) New from LAION: “OpenFlamingo is a framework that enables training and evaluation of large multimodal models (LMMs)”. Multimodal here means it can answer questions about images—their interactive demo includes tools for image captioning, animal recognition, counting objects and visual question answering. Theye’ve released the OpenFlamingo-9B model built on top of LLaMA 7B and CLIP ViT/L-14—the model checkpoint is a 5.24 GB download from Hugging Face, and is available under a non-commercial research license.
LLaMA voice chat, with Whisper and Siri TTS. llama.cpp author Georgi Gerganov has stitched together the LLaMA language model, the Whisper voice to text model (with his whisper.cpp library) and the macOS “say” command to create an entirely offline AI agent that he can talk to with his voice and that can speak replies straight back to him.
Hello Dolly: Democratizing the magic of ChatGPT with open models. A team at DataBricks applied the same fine-tuning data used by Stanford Alpaca against LLaMA to a much older model—EleutherAI’s GPT-J 6B, first released in May 2021. As with Alpaca, they found that instruction tuning took the raw model—which was extremely difficult to interact with—and turned it into something that felt a lot more like ChatGPT. It’s a shame they reused the license-encumbered 52,000 training samples from Alpaca, but I doubt it will be long before someone recreates a freely licensed alternative to that training set.
Was on a plane yesterday, studying some physics; got confused about something and I was able to solve my problem by just asking alpaca-13B—running locally on my machine—for an explanation. Felt straight-up spooky.
Fine-tune LLaMA to speak like Homer Simpson. Replicate spent 90 minutes fine-tuning LLaMA on 60,000 lines of dialog from the first 12 seasons of the Simpsons, and now it can do a good job of producing invented dialog from any of the characters from the series. This is a really interesting result: I’ve been skeptical about how much value can be had from fine-tuning large models on just a tiny amount of new data, assuming that the new data would be statistically irrelevant compared to the existing model. Clearly my mental model around this was incorrect.
Could you train a ChatGPT-beating model for $85,000 and run it in a browser?
I think it’s now possible to train a large language model with similar functionality to GPT-3 for $85,000. And I think we might soon be able to run the resulting model entirely in the browser, and give it capabilities that leapfrog it ahead of ChatGPT.
[... 1,751 words]Train and run Stanford Alpaca on your own machine. The team at Replicate managed to train their own copy of Stanford’s Alpaca—a fine-tuned version of LLaMA that can follow instructions like ChatGPT. Here they provide step-by-step instructions for recreating Alpaca yourself—running the training needs one or more A100s for a few hours, which you can rent through various cloud providers.
bloomz.cpp (via) Nouamane Tazi Adapted the llama.cpp project to run against the BLOOM family of language models, which were released in July 2022 and trained in France on 45 natural languages and 12 programming languages using the Jean Zay Public Supercomputer, provided by the French government and powered using mostly nuclear energy.
It’s under the RAIL license which allows (limited) commercial use, unlike LLaMA.
Nouamane reports getting 16 tokens/second from BLOOMZ-7B1 running on an M1 Pro laptop.
Int-4 LLaMa is not enough—Int-3 and beyond (via) The Nolano team are experimenting with reducing the size of the LLaMA models even further than the 4bit quantization popularized by llama.cpp.